一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2 输出: 3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向右 -> 向下 2. 向右 -> 向下 -> 向右 3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3 输出: 28
第一种思路:
动态规划。
dp[i][j] = dp[i-1][j] + dp[i][j-1]。注意边界条件。第一行或者第一列都只有一种走法。
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
dp = [[0] * m] * n
# print dp
for i in range(n):
for j in range(m):
# print i, j
if not i and not j:
dp[i][j] = 1
elif not i and j:
dp[i][j] = 1
elif i and not j:
dp[i][j] = 1
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
# print dp
return dp[-1][-1]
第二种思路:
从数学的角度考虑, 机器人一共需要向两个方向各走 m - 1, n - 1 步,即总共要走m + n - 2步,选取其中的m - 1步往右走即可。
所以答案就是C (m + n - 2) (m - 1)。
最好用化简的形式计算,避免溢出。
另外此题的m和n有点怪,跟我印象里是反过来的。
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
# C(m + n - 2) (m - 1)
k = m + n - 2
t = m - 1
up = 1
for i in range(0, t):
up *= k - i
down = 1
for i in range(1, m):
down *= i
# print up, down
return up // down