给定一个整数数组 A,返回 A 中最长等差子序列的长度。
回想一下,A 的子序列是列表 A[i_1], A[i_2], ..., A[i_k] 其中 0 <= i_1 < i_2 < ... < i_k <= A.length - 1。并且如果 B[i+1] - B[i]( 0 <= i < B.length - 1) 的值都相同,那么序列 B 是等差的。
示例 1:
输入:[3,6,9,12]
输出:4
解释:
整个数组是公差为 3 的等差数列。
示例 2:
输入:[9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。
示例 3:
输入:[20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
提示:
2 <= A.length <= 20000 <= A[i] <= 10000
思路:
二维DP, 用dp[i][d]表示以下标i结尾,公差为d的子序列的长度。
注意公差可能是负数,所以要+10001把它变正。
class Solution(object):
def longestArithSeqLength(self, A):
"""
:type A: List[int]
:rtype: int
"""
#dp[i][d]表示以下标i结尾,公差为d的子序列的长度
res = 1
l = len(A)
dp = [[1] * 20001 for j in range(l)]
for i in range(1, len(A)):
for j in range(i - 1, -1, -1):
d = A[i] - A[j]
d += 10001
dp[i][d] = max(dp[i][d], dp[j][d] + 1)
res = max(res, dp[i][d])
return res

本文介绍了一种使用动态规划解决寻找最长等差子序列问题的方法,通过二维DP数组记录下标i结尾且公差为d的子序列长度,实现了高效求解。
891

被折叠的 条评论
为什么被折叠?



