LeetCode-Python-221. 最大正方形

664 篇文章 23 订阅

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例:

输入: 

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

输出: 4

第一种思路:

暴力解。

对矩阵里每个是1的元素(xi, yi),都进行搜索,

以(xi, yi)为正方形左上角坐标,可能的正方形边长应该是 【1, min(m - i, n - j)】,

为什么是【1, min(m - i, n - j)】?

答:最小值显而易见是1;

        最大值因为是从左上角往右下画正方形,所以横边的长度最大为(n - i),竖边的长度最大为(m - i)

接着尝试判断每一种正方形坐标范围内的点是否全为1。

class Solution(object):
    def maximalSquare(self, matrix):
        """
        :type matrix: List[List[str]]
        :rtype: int
        """
        m = len(matrix)
        if m == 0:
            return 0
        n = len(matrix[0])
        if n == 0:
            return 0
        self.res = 0
        
        def find(x, y):
            for length in range(1, min(m - i, n - j) + 1):#length是边长
                cnt = 0
                
                for k in range(length):
                    for t in range(length):
                        xx = x + k
                        yy = y + t
                        
                        if 0 <= xx <m and 0 <= yy < n:
                            if matrix[xx][yy] == "0":
                                return 
                            else:
                                cnt += 1
                if cnt == length ** 2:
                    self.res = max(self.res, cnt)
                                 
                
        
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == "1":
                    find(i, j)
                    
        return self.res
                           

第二种思路:

DP。

用dp[i][j]表示以matrix[i][j]作为全为1的正方形的右下角的正方形个数,

状态转移方程为:

if matrix[i][j] == "1", dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1] + 1

时间复杂度:O(MN)

空间复杂度:O(MN)

class Solution(object):
    def maximalSquare(self, matrix):
        """
        :type matrix: List[List[str]]
        :rtype: int
        """
        if not matrix or not matrix[0]:
            return 0
        m, n = len(matrix), len(matrix[0])
        
        dp = [[0 for _ in range(n)] for _ in range(m)]
        res = 0
        for j in range(n):
            if matrix[0][j] == "1":
                dp[0][j] = 1
                res = 1
        
        for i in range(m):
            if matrix[i][0] == "1":
                dp[i][0] = 1
                res = 1
                
        for i in range(1, m):
            for j in range(1, n):
                if matrix[i][j] == "1":
                    dp[i][j] = min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1
                    res = max(res, dp[i][j] ** 2)
        # print dp
        return res

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值