在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。
示例:
输入:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
输出: 4
第一种思路:
暴力解。
对矩阵里每个是1的元素(xi, yi),都进行搜索,
以(xi, yi)为正方形左上角坐标,可能的正方形边长应该是 【1, min(m - i, n - j)】,
为什么是【1, min(m - i, n - j)】?
答:最小值显而易见是1;
最大值因为是从左上角往右下画正方形,所以横边的长度最大为(n - i),竖边的长度最大为(m - i)
接着尝试判断每一种正方形坐标范围内的点是否全为1。
class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
m = len(matrix)
if m == 0:
return 0
n = len(matrix[0])
if n == 0:
return 0
self.res = 0
def find(x, y):
for length in range(1, min(m - i, n - j) + 1):#length是边长
cnt = 0
for k in range(length):
for t in range(length):
xx = x + k
yy = y + t
if 0 <= xx <m and 0 <= yy < n:
if matrix[xx][yy] == "0":
return
else:
cnt += 1
if cnt == length ** 2:
self.res = max(self.res, cnt)
for i in range(m):
for j in range(n):
if matrix[i][j] == "1":
find(i, j)
return self.res
第二种思路:
DP。
用dp[i][j]表示以matrix[i][j]作为全为1的正方形的右下角的正方形个数,
状态转移方程为:
if matrix[i][j] == "1", dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1] + 1
时间复杂度:O(MN)
空间复杂度:O(MN)
class Solution(object):
def maximalSquare(self, matrix):
"""
:type matrix: List[List[str]]
:rtype: int
"""
if not matrix or not matrix[0]:
return 0
m, n = len(matrix), len(matrix[0])
dp = [[0 for _ in range(n)] for _ in range(m)]
res = 0
for j in range(n):
if matrix[0][j] == "1":
dp[0][j] = 1
res = 1
for i in range(m):
if matrix[i][0] == "1":
dp[i][0] = 1
res = 1
for i in range(1, m):
for j in range(1, n):
if matrix[i][j] == "1":
dp[i][j] = min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1
res = max(res, dp[i][j] ** 2)
# print dp
return res