假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3
的矩阵来表示的。
例如,costs[0][0]
表示第 0 号房子粉刷成红色的成本花费;costs[1][2]
表示第 1 号房子粉刷成绿色的花费,以此类推。请你计算出粉刷完所有房子最少的花费成本。
注意:
所有花费均为正整数。
示例:
输入: [[17,2,17],[16,16,5],[14,3,19]] 输出: 10 解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。 最少花费: 2 + 5 + 3 = 10。
思路:
用dp[i][j]来表示在第 i 个房子,涂第j种颜色的最小开销。
显然对于第一行dp[0], dp[0] == costs[0],
对于i !=0的情况,dp[i][j] = costs[i][j] + 上一行另外两种颜色的开销的较小值。
class Solution(object):
def minCost(self, costs):
"""
:type costs: List[List[int]]
:rtype: int
"""
if not costs:
return 0
dp = costs
for i in range(1, len(costs)):
dp[i][0] += min(dp[i - 1][1], dp[i - 1][2])
dp[i][1] += min(dp[i - 1][0], dp[i - 1][2])
dp[i][2] += min(dp[i - 1][0], dp[i - 1][1])
return min(dp[-1])