学习笔记3——LFM算法(Latent Factor Model)

1. LFM算法基本内容

输入:user对item的点击矩阵

参数:每一个user的向量表示和每一个item的向量表示

方式:用user矩阵和item矩阵的矩阵乘 拟合 user对item的点击矩阵

2. LFM应用普适场景:

2.1 获取user的item推荐列表、

2.2 获取item间的相似度列表、

2.3 挖掘item间隐含topic

3. 实例:

3.1 输入:user对item的点击矩阵(1代表点击、0代表未点击)

user对item的点击矩阵
 item1item2item3
user1101
user2010
user3110

3.2 输出:

        user1:[0.123, 0.325, ..., 0.623], ...

        item1:[0.214, 0.034, ..., 0.241], ...

3.3 user和item的向量维度是自定义的,用user与item作内积即可判断user对item的偏好

4. LFM应用具体场景

4.1 计算用户的item top like、

4.2 计算item的item top sim、

4.3 计算item的topic

5. LFM建模公式

p(u,i)=p_{u}^{T}q_{i}=\sum_{f=1}^{F}p_{uf}q_{if}

其中,p(u,i)表示user对item的点击关系,若user点击了item则p(u,i)=1,否则p(u,i)=0F表示向量的维度。

模型最终输出的是p_{u}q_{i},即user和item分别的vector表达形式

6. LFM损失函数 loss function

loss = \sum_{(u,i)\in D}(p(u,i)-p^{LFM}(u,i))^2

其中,p(u,i)是监督模型的label、p^{LFM}(u,i)是模型估计的user对item的点击关系、D是所有样本的集合。为了避免过拟合,在损失函数中增加l_2正则化项(\lambda是正则化参数),如下公式所示:

loss = \sum_{(u,i)\in D}(p(u,i)-\sum _{f=1}^Fp_{uf}q_{if})^2+\lambda |p_u|^2+\lambda |q_i|^2

7. LFM算法迭代,求梯度

\frac{\partial loss}{\partial p_{uf}}=-2(p(u,i)-p^{LFM}(u,i))q_{if}+2\lambda p_{uf}

\frac{\partial loss}{\partial q_{if}}=-2(p(u,i)-p^{LFM}(u,i))p_{uf}+2\lambda q_{if}

使用梯度下降的方法,可以得到p_{uf}q_{if}的迭代更新公式,\beta表示学习率:

p_{uf}=p_{uf}-\beta \frac {\partial loss}{\partial p_{uf}}

q_{if}=q_{if}-\beta \frac {\partial loss}{\partial q_{if}}

8. 影响LFM算法的不同情况

8.1 负样本选取  负样本比正样本多得多,因此选取充分展现但用户无点击的item作为负样本;

8.2 模型参数:隐特征F (10~32之间)、正则参数\lambda (0.01~0.05之间)、learning rate 学习率\beta (0.01~0.05之间)

9. LFM vs item CF

9.1 理论基础 LFM使用隐特征基于平方误差训练监督学习模型;

9.2 离线计算空间时间复杂度 LFM需要的空间复杂度更低;

9.3 在线推荐与推荐解释。

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值