贝叶斯分析
qq_32464407
这个作者很懒,什么都没留下…
展开
-
【贝叶斯分析⑥】高斯混合模型
代码地址:https://github.com/ChengJiacheng/bayesian-analysis/blob/master/GMM.py有时候,某些数据的生成无法用一个简单的高斯分布描述,但可以用高斯分布的组合来描述。这种假设数据是从一系列分布的组合中产生的模型,称作混合模型。混合模型中我们需要一个隐变量来描述数据是从哪个分布产生的,这个隐变量是一个categorical变量,描述...原创 2018-07-31 21:13:28 · 2598 阅读 · 0 评论 -
【贝叶斯分析④】线性回归
代码地址:https://github.com/ChengJiacheng/bayesian-analysis/blob/master/LR.py线性回归是统计学习中的常见问题,即求解线性模型y=α+βx中的参数α、β。通常的做法是最小二乘法(最小均方误差法),将参数估计问题(the problem of estimating α and β)转化成了一个最优化问题(an optimizati...原创 2018-07-31 18:06:32 · 655 阅读 · 0 评论 -
【贝叶斯分析⑤】鲁棒线性回归
代码地址:https://github.com/ChengJiacheng/bayesian-analysis/blob/master/RobustLR.py有时我们的数据中会有异常点,会对回归的结果造成很大的影响。根据此前鲁棒推断的经验,我们将数据的先验分布改为t分布再进行推断,可以得到鲁棒的结果。...原创 2018-07-31 20:04:26 · 2171 阅读 · 0 评论 -
【贝叶斯分析③】高斯推断和鲁棒推断
高斯分布是一个非常简单而有用的分布,一方面是因为高斯分布数学上分析起来是否简单。另一个原因可能是中心极限定理(CLT),大致是说当样本数足够多时,样本均值会呈正态分布。我们可以用高斯分布来对某一观测指标的分布进行建模,高斯分布的两个参数均值、标准差的先验可以用均匀分布、半正态分布。 # -*- coding: utf-8 -*-import numpy as npim...原创 2018-07-31 14:40:07 · 844 阅读 · 0 评论 -
【贝叶斯分析②】抛硬币问题
抛硬币问题可能是贝叶斯推断中最基础的一个入门问题,该问题简单来说就是对一枚硬币出现正面朝上的概率θ进行估计。不同于MLE, MAP等估计方法求出的是一个估计值,贝叶斯分析求出的是一个后验分布(用贝叶斯公式)。θ的先验通常选用beta分布,n次观测正面朝上次数y的似然则可以用参数为n和θ二项分布来描述。用数学表达式描述如下θ ~ Beta(α, β),y~ Bin(n, p = θ).这里顺...原创 2018-07-30 23:58:09 · 5892 阅读 · 0 评论 -
【贝叶斯分析①】Metropolis-Hastings算法理解和简单实现
贝叶斯分析的目标就是根据先验分布(prior distribution)和观测数据(data)求后验分布(posterior distribution),计算机不能存储连续的分布,也就不能通过分析的方法求出后验,而是只能通过对分布进行采样离散化存储,这样就引出了对(先验)分布采样的问题。求参数后验的问题又称为推断问题(Inference),解决推断的方法主要分为Non-Markovian meth...原创 2018-07-30 21:57:58 · 4568 阅读 · 0 评论 -
【贝叶斯分析⑦】高斯过程
贝叶斯框架下, 可以用高斯过程来估计一个函数 f : R→R. 对于每个xi, f(xi)可以用一个均值方差暂未知的高斯分布来建模。因为连续空间的xi可以有无限个,拟合一个函数的高斯过程其实一个无限维的多元高斯。实际中,不管是我们的给定数据{(x, y)},还是测试点{x*}的个数都是有限的。因此无论是高斯过程先验还是还是高斯过程后验都是有限维的。因为多元高斯分布的任意有限自己还是多远高斯分布,所...原创 2018-07-29 18:38:32 · 3381 阅读 · 2 评论