蓝桥杯:巧排扑克牌

 思路分析:

import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    public static void main(String[] args) {
        /*
          假设有13张牌,分别是X(N):
          X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
          第一步,先把最下面一张拿到最上面
          X13  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
          然后再将最后一张拿出来放到桌面上,是A
          X13  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11,X12=A
          第二步,拿下面一张票放到最上面
          X11 X13  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10,X12=A
          再将最后一张拿出来放到桌面上,是2
          X11 X13  X1 X2 X3 X4 X5 X6 X7 X8 X9,X12=A,X10=2,
          第三步,拿下面一张票放到最上面
          X9 X11 X13  X1 X2 X3 X4 X5 X6 X7 X8
          再将最后一张拿出来放到桌面上,是3
          X9 X11 X13  X1 X2 X3 X4 X5 X6 X7 ,X12=A,X10=2,X8=3
          X7 X9 X11 X13  X1 X2 X3 X4 X5,X12=A,X10=2,X8=3,x6=4
          X5 X7 X9 X11 X13  X1 X2 X3,X12=A,X10=2,X8=3,x6=4,X4=5
          X3 X5 X7 X9 X11 X13 X1,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6
          X1 X3 X5 X7 X9 X11,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7
          X11 X1 X3 X5 X7,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7,X9=8
          X7 X11 X1 X3,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7,X9=8,X5=9
          X3 X7 X11,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7,X9=8,X5=9,X1=10
          X11 X3,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7,X9=8,X5=9,X1=10,X7=J
          X3,,X12=A,X10=2,X8=3,x6=4,X4=5,X2=6,X13=7,X9=8,X5=9,X1=10,X7=J,X11=Q
          X3 = K
          看到这里应该有规律了吧?就是隔一个未知数自增一次,
          也就是那么原始排序应该是
          ?,A,?,2,?,3,?,4,?,5,?,6,?(已经是13张牌了)
          7,A,?,2,?,3,?,4,?,5,?,6,?(隔一个未知数自增一次)
          7,A,?,2,8,3,?,4,9,5,?,6,10(隔一个未知数自增一次)
          7,A,?,2,8,3,J,4,9,5,?,6,10
          7,A,Q,2,8,3,J,4,9,5,?,6,10
          7,A,Q,2,8,3,J,4,9,5,K,6,10
          PS:这个输出检查跟**一样(逗号完还要空格间隔)
        */   
        System.out.println("7, A, Q, 2, 8, 3, J, 4, 9, 5, K, 6, 10");
    }
}

答案是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值