复杂度体验-2

问题及代码:

/*  
*Copyright (c)2016,烟台大学计算机与控制工程学院  
*All rights reserved.  
*文件名称:复杂度2汉诺塔.cpp  
*作    者:林志文
*完成日期:2016年9月10日  
*版 本 号:v1.0  
*  
*问题描述:有一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根  
           宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64  
          片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:  
           一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天  
           穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将  
           同归于尽。  
          可以算法出,当盘子数为n 个时,需要移动的次数是f(n)=2 n ?1 。n=64时,假如每秒钟移一次,  
           共需要18446744073709551615秒。一个平年365天有31536000秒,闰年366天有31622400秒,  
           平均每年31556952秒,移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系  
           的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一  
           切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。据此,2 n从数量级上看大得不得了。用递归算  
           法求解汉诺塔问题,其复杂度可以求得为O(2n) ,是指数级的算法。请到课程主页下载程序运行一  
           下,体验盘子数discCount为4、8、16、20、24时在时间耗费上的差异,你能忍受多大的discCount。  
*输入描述:无  
*程序输出:移动次数  
*/    
#include <stdio.h>     
#define discCount 4             
   long move(int, char, char,char);    
int main()    
{    
    long count;    
    count=move(discCount,'A','B','C');    
    printf("%d个盘子需要移动%ld次\n", discCount, count);    
    return 0;    
}    
    
long move(int n, char A, char B,char C)    
{    
    long c1,c2;    
    if(n==1)    
       return 1;    
    else    
   {    
       c1=move(n-1,A,C,B);    
       c2=move(n-1,B,A,C);    .        
       return c1+c2+1;    
    }    
}    


运行结果:





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值