分治思想-快速傅立叶变换(FFT)

引言

DFT:离散傅立叶变换,求一个多项式在n个特殊点的值;

FFT:DFT的改进的快速实现

常见应用:两个多项式相乘(和两个n位整数相乘);时频变换;求解偏微分方程;

FFT中运用了分治的思想

问题描述

给定一个多项式 A ( x ) = a 0 + a 1 x + . . . + a n − 1 x n − 1 A(x) = a_0+a_1x+...+a_{n-1}x^{n-1} A(x)=a0+a1x+...+an1xn1,求其在给定的点: 1 , ω , ω 2 , . . . , ω n − 1 1,\omega,\omega^2,...,\omega^{n-1} 1,ω,ω2,...,ωn1的值࿰

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值