贪心算法-最短路径问题(从动态规划优化到贪心)

最短路径问题

问题描述

给定一个图 G = ⟨ V , E ⟩ G=⟨V,E⟩ G=V,E,对于图中每条边 e = ⟨ i , j ⟩ e=⟨i,j⟩ e=i,j都有一个距离 d i , j d_{i,j} di,j。起始点是s,终点是t,问从s到t的最短路径是多少?
在这里插入图片描述

解决方法

1.动态规划

最短路径问题是一个多步决策问题,所以可以先考虑用动态规划来求解。如果我们用OPT(i,j)表示点i到点j的最短路径,如果图中存在负值的边、负值环路,就转移方程会出现类似陷入循环等问题,而且转移方程无法与明确的d(u,v)做关联。所以我们通过引入一个新变量k,使得OPT(i,j)变成OPT(i,j,k)(从i到j经过最多k条边的最短路径),因为起点是固定的,我们只用考虑终点即可,最终定义OPT(v,k):从s到点v最多经过k条边的最短路径。由此我们可以得到转移方程如下:
O P T ( v , k ) = min ⁡ { O P T ( v , k − 1 ) min ⁡ ⟨ u , v ⟩ ∈ E { O P T ( u , k − 1 ) + d u , v } OPT(v,k) = \min \begin {cases} OPT(v,k-1) \\ \min_{\lang u,v\rang \in E}\{OPT(u,k-1)+d_{u,v}\} \end{cases} OPT(v,k)=min{ OPT(v,k1)minu,vE{ OPT(u,k1)+du,v}
我们要在最多经过k条边内到达v,有两种可能,一是直接最多经过k-1条边就可以到达;二是先经过最多k-1条边到达u,存在一条边从u到v,经过此边到达v(可能有多个u满足,取最小者),二者取较小即OPT(v,k)。

这个是Bellman Ford算法,是一种求解单源最短路径的算法。

伪代码如下:
在这里插入图片描述
通过上面算法,我们可以算出s到v的最短路径为4,下面表格还可以继续延申(k最多可能为8)。
在这里插入图片描述

2.贪心算法

在有了动态规划算法之后,我们观察上图示例可以发现是存在冗余计算的。

优化1:去除冗余计算

这个表格里的值的计算,要么是走了k-1条边后再走一条边从而让路径更短,要么是走k-1条边就能到,再多走一条边,路径也没有更短。后者这种在表格里就是横着平移,有很多重复的值是不需要计算的,为了找到什么时候可以不再继续计算该点的最小值(即该点不可能再被更新地更小了)。为此,我们定义一个特殊点 v ∗ v^∗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值