AtCoder 079F Namori Grundy

根据题意,题中的弱连通图有且仅有一个环。
对于一个不在环上的点u,可以得到a[u]为mex{a[v1], a[v2]…, a[vk-1], a[vk]},其中{v1, v2, …,vk-1,vk} 为由u连向的所有子节点。
对于一个在环上的点u,他的值是不确定的,因为他有一个子节点vk+1也在环中。所以该点的取值有两种可能,一种是让a[u] = mex{a[v1], a[v2]…, a[vk-1], a[vk]},一种是让a[vk+1] = mex{a[v1], a[v2]…, a[vk-1], a[vk]}.

代码:

#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define CLR(A, X) memset(A, X, sizeof(A))
using namespace std;

typedef long long LL;
typedef pair<int, int> PII;
const double eps = 1e-10;
int dcmp(double x){if(fabs(x)<eps) return 0; return x<0?-1:1;}
const LL INF = 0x3f3f3f3f;
const LL MOD = 1e9+7;
const int N = 2e5+5;

int p[N], out[N], grundy[N];
vector<int> G[N];
set<int> S;

int main() {
    CLR(out, 0);
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) {
        scanf("%d", &p[i]);
        out[p[i]]++;
        G[p[i]].pb(i);
    }
    queue<int> Q;
    for(int i = 1; i <= n; i++) if(!out[i]) {
        Q.push(i);
    }
    while(!Q.empty()) {
        int u = Q.front(); Q.pop();
        S.clear();
        for(int v:G[u]) S.insert(grundy[v]);
        int j = 0;
        while(S.count(j)) j++;
        grundy[u] = j;
        if(--out[p[u]] == 0) Q.push(p[u]);
    }
    bool flag = 0;
    for(int i = 1; i <= n; i++) if(out[i]) {
        S.clear();
        int ti;
        for(int v:G[i]) {
            if(!out[v]) S.insert(grundy[v]);
            else ti = v;
        }
        int j = 0;
        while(S.count(j)) j++;
        grundy[i] = j;
        for(int u = p[i]; ;) {
            S.clear();
            for(int v:G[u]) S.insert(grundy[v]);
            int k = 0;
            while(S.count(k)) k++;
            grundy[u] = k;
            u = p[u];
            if(u == p[i]) break;
        }
        if(grundy[i] == j) flag = 1;
        grundy[ti] = j;
        for(int u = i; ;) {
            S.clear();
            for(int v:G[u]) S.insert(grundy[v]);
            int k = 0;
            while(S.count(k)) k++;
            grundy[u] = k;
            u = p[u];
            if(u == i) break;
        }
        if(grundy[ti] == j) flag = 1;
        break;
    }
    printf("%s\n", flag?"POSSIBLE":"IMPOSSIBLE");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值