根据题意,题中的弱连通图有且仅有一个环。
对于一个不在环上的点u,可以得到a[u]为mex{a[v1], a[v2]…, a[vk-1], a[vk]},其中{v1, v2, …,vk-1,vk} 为由u连向的所有子节点。
对于一个在环上的点u,他的值是不确定的,因为他有一个子节点vk+1也在环中。所以该点的取值有两种可能,一种是让a[u] = mex{a[v1], a[v2]…, a[vk-1], a[vk]},一种是让a[vk+1] = mex{a[v1], a[v2]…, a[vk-1], a[vk]}.
代码:
#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define CLR(A, X) memset(A, X, sizeof(A))
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const double eps = 1e-10;
int dcmp(double x){if(fabs(x)<eps) return 0; return x<0?-1:1;}
const LL INF = 0x3f3f3f3f;
const LL MOD = 1e9+7;
const int N = 2e5+5;
int p[N], out[N], grundy[N];
vector<int> G[N];
set<int> S;
int main() {
CLR(out, 0);
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
out[p[i]]++;
G[p[i]].pb(i);
}
queue<int> Q;
for(int i = 1; i <= n; i++) if(!out[i]) {
Q.push(i);
}
while(!Q.empty()) {
int u = Q.front(); Q.pop();
S.clear();
for(int v:G[u]) S.insert(grundy[v]);
int j = 0;
while(S.count(j)) j++;
grundy[u] = j;
if(--out[p[u]] == 0) Q.push(p[u]);
}
bool flag = 0;
for(int i = 1; i <= n; i++) if(out[i]) {
S.clear();
int ti;
for(int v:G[i]) {
if(!out[v]) S.insert(grundy[v]);
else ti = v;
}
int j = 0;
while(S.count(j)) j++;
grundy[i] = j;
for(int u = p[i]; ;) {
S.clear();
for(int v:G[u]) S.insert(grundy[v]);
int k = 0;
while(S.count(k)) k++;
grundy[u] = k;
u = p[u];
if(u == p[i]) break;
}
if(grundy[i] == j) flag = 1;
grundy[ti] = j;
for(int u = i; ;) {
S.clear();
for(int v:G[u]) S.insert(grundy[v]);
int k = 0;
while(S.count(k)) k++;
grundy[u] = k;
u = p[u];
if(u == i) break;
}
if(grundy[ti] == j) flag = 1;
break;
}
printf("%s\n", flag?"POSSIBLE":"IMPOSSIBLE");
return 0;
}