深度学习环境搭建(一)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_32526087/article/details/82824143

之前一直忙着搭建深度学习环境,我的框架是cuda8.0+cudnn6.0+tensorflow_gpu1.4+opencv3.4,然后就去跑项目了,跑了faster-rcnn,现在正在做目标跟踪的一些东西,初学者,不喜勿喷,没注意格式,大家凑合着看吧。

一、安装显卡驱动(NVIDIA 390 or 384)
个人建议采用tty装高版本(比如396,支持性好)的驱动
我是安装的384,搜索附加驱动,在驱动一栏有两个驱动,一个384,一个x-org,然后应用更改就可以了,偷了一个懒,嘻嘻
在终端输入$ nvidia-smi输出显卡信息表明安装完成
二、Cuda8.0
(1)Ubuntu16.04对应的gcc版本为5.3,gcc5.4降为5.3的参考网站为:https://blog.csdn.net/cheneykl/article/details/79114825
(2)确定有cuda使用的GPU Dirver,可使用下面命令

$ lspci | grep -i nvidia

验证系统是否有正确的内核头和安装包

$ uname -r

对ubuntu系统,可以使用下列命令进行内核头与开发包的安装:

$ sudo apt-get install linux-headers-$(uname -r) 

(3)去官网下载相应cuda版本;
(4)将下载好的文件放置在对应的目录下,并输入指令执行

$ sudo sh cuda_8.0.27_linux.run

(5)开始安装,长按空格阅读安装证书内容,并确认安装。在提示到安装显卡时,我们选择NO,因为之前我们已经安装好。
其他的安装选项用使用默认安装;
(6)安装完成后声明环境变量,并将其写入到 ~/.bashrc 的尾部:gedit ~/.bashrc

$ export
PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
$ export
LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
$ source ~/.bashrc  保存更改

(7)在命令行输入下列语句,设置环境变量和动态链接库;

sudo gedit /etc/profile

(8)在打开的文件末尾加入

export PATH=/usr/local/cuda/bin:$PATH

(9)保存后,创建链接文件:

sudo gedit /etc/ld.so.conf.d/cuda.conf

(10)在打开的文件中添加下列语句:

/usr/local/cuda/lib64

(11)使链接立即生效

sudo ldconfig

检测cuda是否安装成功:

$ cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
$ sudo make
$sudo ./deviceQuery

如果终端显示出显卡相关信息,则表示安装成功。
参考网站:https://www.cnblogs.com/wmxfd/p/installation_of_nvidia_graphics_driver_and_cuda8_and_cudnn6.html

个人遇到的问题及解决方法
A.无使用权限怎么解决:
最简单的方法 sudo su 切换到root用户下
切换回普通用户:exit
B.不论执行什么命令都出现如下错误:

the command could not be located because '/usr/bin' is not included in the
PATH environment variable

输入下面代码就ok了

$source  /etc/environment
展开阅读全文

没有更多推荐了,返回首页