设数组A的长度为m, 数组B的长度为n, 两个数组都都是递增有序的。
求这两个数组的中位数
首先我们看看中位数的特点,一个大小为n的数组,
如果n是奇数,则中位数只有一个,数组中恰好有 (n-1)/2 个元素比中位数小。
如果n是偶数,则中位数有两个(下中位数和上中位数),这里我们只求下中位数,对于下中位数,
数组中恰好有(n-1)/2个元素比下中位数小。
此题中,中位数只有一个,它前面有 c = (m+n-1)/2 个数比它小。中位数要么出现在数组A中,
要么出现在数组B中,我们先从数组A开始找。考察数组A中的一个元素A[p], 在数组A中,
有 p 个数比A[p]小,如果数组B中恰好有 c-p 个数比 A[p] 小, 则俩数组合并后就恰好有 c 个数比A[p]小,
于是A[p]就是要找的中位数。 如下图所示:
如果A[p] 恰好位于 B[c-p-1] 和 B[c-p] 之间,则 A[p] 是中位数
如果A[p] 小于 B[c-p-1] ,说明A[p] 太小了,接下来从 A[p+1] ~A[m-1]开始找
如果A[p] 大于 B[c-p] ,说明A[p] 太大了,接下来从 A[0] ~A[p-1]开始找。
如果数组A没找到,就从数组B找。
注意到数组A和数组B都是有序的,所以可以用二分查找。代码如下:
#include <stdio.h>
#include <stdlib.h>
/* 从数组A和B中找下中位数 */
int find_median(int *A, int *B, int m, int n, int s, int t)
{
int p, c;
c = (m+n-1)/2; /* 有多少个数小于下中位数 */
p = (s+t)/2;
/* 如果下中位数不在A中,就从数组B找 */
if (s > t) {
return find_median(B, A, n, m, 0, n-1);
}
/* 数组A中有p个数小于A[p], 当且进当数组B中有c-p个数小于A[p], A[p]才是中位数 */
if (A[p] >= B[c-p-1] && A[p] <= B[c-p]) {
return A[p];
}
/* A[p]太小了,从数组A中找一个更大的数尝试 */
if (A[p] < B[c-p-1]) {
return find_median(A, B, m, n, p+1, t);
}
/* A[p]太大了,从数组A中找一个更小的数尝试 */
return find_median(A, B, m, n, s, p-1);
}
int main()
{
int m, n;
int A[]={1,3,5,7,8,9,10,12,24,45,65};
int B[]={2,4,6,10,11,12,13,14,17,19,20,34,44,45,66,99};
m = sizeof(A)/sizeof(int);
n = sizeof(B)/sizeof(int);
printf("%d\n", find_median(A, B, m, n, 0, m-1));
return 0;
}