1. 算法要求
一个长度为L(L≥1)的升序序列S,处在第L / 2(若为小数则去掉小数后加1)个位置的数称为S 的中位数。例如,若序列S1=(11,13,15,17,19),则S1 的中位数是15,两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2=(2,4,6,8,20),则S1 和S2 的中位数是11。现在有两个等长升序序列A 和B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列A 和B 的中位数。
2. 算法思想
分别求出序列A 和B 的中位数,设为a 和b,求序列A 和B 的中位数过程如下:
1)若a=b,则a 或b 即为所求中位数,算法结束。
2)若a<b,则舍弃序列A 中较小的一半,同时舍弃序列B 中较大的一半,要求舍弃的长度相等;
3)若a>b,则舍弃序列A 中较大的一半,同时舍弃序列B 中较小的一半,要求舍弃的长度相等;
在保留的两个升序序列中,重复过程1)、2)、3),直到两个序列中只含一个元素时为止,较小者即为所求的中位数。
3. 算法实现
int M_Search(int A[], int B[], int n)
{
int start1 = 0, end1 = n - 1, m1, start2 = 0, end2 = n - 1, m2;
//分别表示序列A和B的首位数、末位数和中位数
while (start1 != end1 || start2 != end2)
{
m1 = (start1 + end1) / 2;
m2 = (start2 + end2) / 2;
if (A[m1] == B[m2])
return A[m1]; //满足条件 1)
if (A[m1]<B[m2]) // 满足条件 2)
{
if ((start1 + end1) % 2 == 0) //若元素个数为奇数
{
start1 = m1; //舍弃A中间点以前的部分且保留中间点
end2 = m2; //舍弃B中间点以后的部分且保留中间点
}
else //元素个数为偶数
{
start1 = m1 + 1; //舍弃A中间点及中间点以前部分
end2 = m2; //舍弃B中间点以后部分且保留中间点
}
}
else
{ //满足条件3)
if ((start2 + end2) % 2 == 0) //若元素个数为奇数
{
end1 = m1; //舍弃A中间点以后的部分且保留中间点
start2 = m2; //舍弃B中间点以前的部分且保留中间点
}
else //元素个数为偶数
{
end1 = m1; //舍弃A中间点以后部分且保留中间点
start2 = m2 + 1; //舍弃B中间点及中间点以前部分
}
}
}
return A[start1]<B[start2] ? A[start1] : B[start2];
}
参考:https://blog.csdn.net/juliet0727/article/details/88380866
转自:
https://blog.csdn.net/yanyangjuhua/article/details/78825603
详细算法描述:
① 输入两个长度自定且等长的数组,然后对他们进行赋值。算法的思路是分别取他们的中位数进行比较,假设两个数组如下:
1 | 3 | 5 | 7 | 9 |
2 | 3 | 4 | 5 | 6 |
上面数组的中位数是比下面数组的中位数大的,接下来的操作就是取大中位数的左边(包括中位数),取小中位数的右边(包括中位数)。
1 | 3 | 5 |
4 | 5 | 6 |
再次重复以上操作,最后有
3 | 5 |
4 | 5 |
接下来已经不能再分别取他们的中位数缩小范围了,所以对两个数组进行比较。取数组的首位进行比较,如上即是3和4进行比较,若是哪边比较小就取它的下一位进行比较。过程就是3和4比(3比4小,所以下标加1)→5和4比(4比5小,所以得到中位数为4)→中位数为4。
这是当数组为奇数长度的情况,若是数组长度为1,或者是数组长度为偶数,要再次进行讨论。
② 当数组长度为1时,比较两个数,谁比较小谁就是中位数。
③ 当数组长度为偶数时,
-100 | -10 | 1 | 1 | 1 | 1 |
-50 | 0 | 2 | 3 | 4 | 5 |
在第一步,取数组的中位数时候,若是按照奇数的方法,我们会发现,最后取出来的两个数组不是等长的,这样的话就会对我们的实际结果造成影响。如上,我们可以一个数组取第三个数,一个数组取第四个数这样进行比较,这样接下来得到的数组都是等长的。接下来步骤和奇数数组一样。
④ 在这里,偶数数组这样的取法原因是,我们每次取新数组出来,只要两个数组的长度和加起来是原来数组的一半或者大于一半,我们就可以保证中位数一直在我们取出来的新数组里面,不会出现中位数丢失的情况。
算法时间及空间复杂度分析:
时间复杂度:每一次调用的过程为判断余下数组长度是否大于2,接下来判断数组个数是奇数个还是偶数个,最后判断两个数组的中位数谁大谁小。所以t(n) = O(1)+O(1)+O(1)。总共执行次数为logn次。在主函数中,执行的语句为创建两个数组还有数组左右下标等变量,和为数组赋值。所以总的时间复杂度为T(n) = logn*t(n)+O(n)+O(1) = O(logn)。
空间复杂度:算法中辅助空间并不随着数组长度n而线性增大,所以空间复杂度为O(1)。