求两个有序数组的中位数(等长)

1.        算法要求

一个长度为L(L≥1)的升序序列S,处在第L / 2(若为小数则去掉小数后加1)个位置的数称为S 的中位数。例如,若序列S1=(11,13,15,17,19),则S1 的中位数是15,两个序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2=(2,4,6,8,20),则S1 和S2 的中位数是11。现在有两个等长升序序列A 和B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列A 和B 的中位数。

2.        算法思想

分别求出序列A 和B 的中位数,设为a 和b,求序列A 和B 的中位数过程如下:

1)若a=b,则a 或b 即为所求中位数,算法结束。

2)若a<b,则舍弃序列A 中较小的一半,同时舍弃序列B 中较大的一半,要求舍弃的长度相等;

3)若a>b,则舍弃序列A 中较大的一半,同时舍弃序列B 中较小的一半,要求舍弃的长度相等;

在保留的两个升序序列中,重复过程1)、2)、3),直到两个序列中只含一个元素时为止,较小者即为所求的中位数。

3.        算法实现

int M_Search(int A[], int B[], int n) 
{
	int start1 = 0, end1 = n - 1, m1, start2 = 0, end2 = n - 1, m2;
	//分别表示序列A和B的首位数、末位数和中位数

	while (start1 != end1 || start2 != end2)
	{
		m1 = (start1 + end1) / 2;
		m2 = (start2 + end2) / 2;
		if (A[m1] == B[m2])
			return A[m1];   //满足条件 1)

		if (A[m1]<B[m2]) // 满足条件 2)
		{  
			if ((start1 + end1) % 2 == 0)  //若元素个数为奇数
			{  
				start1 = m1;  //舍弃A中间点以前的部分且保留中间点
				end2 = m2;  //舍弃B中间点以后的部分且保留中间点
			}
			else				//元素个数为偶数
			{ 
				start1 = m1 + 1;  //舍弃A中间点及中间点以前部分
				end2 = m2;  //舍弃B中间点以后部分且保留中间点
			}
		}
		else
		{  //满足条件3)
			if ((start2 + end2) % 2 == 0)   //若元素个数为奇数
			{ 
				end1 = m1;    //舍弃A中间点以后的部分且保留中间点
				start2 = m2;    //舍弃B中间点以前的部分且保留中间点
			}
			else     //元素个数为偶数
			{  
				end1 = m1;    //舍弃A中间点以后部分且保留中间点
				start2 = m2 + 1;    //舍弃B中间点及中间点以前部分
			}
		}
	}
	return  A[start1]<B[start2] ? A[start1] : B[start2];
}

参考:https://blog.csdn.net/juliet0727/article/details/88380866

转自:
https://blog.csdn.net/yanyangjuhua/article/details/78825603

详细算法描述:

① 输入两个长度自定且等长的数组,然后对他们进行赋值。算法的思路是分别取他们的中位数进行比较,假设两个数组如下:

1

3

5

7

9

2

3

4

5

6

上面数组的中位数是比下面数组的中位数大的,接下来的操作就是取大中位数的左边(包括中位数),取小中位数的右边(包括中位数)。

1

3

5

4

5

6

再次重复以上操作,最后有

3

5

4

5

接下来已经不能再分别取他们的中位数缩小范围了,所以对两个数组进行比较。取数组的首位进行比较,如上即是3和4进行比较,若是哪边比较小就取它的下一位进行比较。过程就是3和4比(3比4小,所以下标加1)→5和4比(4比5小,所以得到中位数为4)→中位数为4。

这是当数组为奇数长度的情况,若是数组长度为1,或者是数组长度为偶数,要再次进行讨论。

② 当数组长度为1时,比较两个数,谁比较小谁就是中位数。

③ 当数组长度为偶数时,

-100

-10

1

1

1

1

-50

0

2

3

4

5

在第一步,取数组的中位数时候,若是按照奇数的方法,我们会发现,最后取出来的两个数组不是等长的,这样的话就会对我们的实际结果造成影响。如上,我们可以一个数组取第三个数,一个数组取第四个数这样进行比较,这样接下来得到的数组都是等长的。接下来步骤和奇数数组一样。

④ 在这里,偶数数组这样的取法原因是,我们每次取新数组出来,只要两个数组的长度和加起来是原来数组的一半或者大于一半,我们就可以保证中位数一直在我们取出来的新数组里面,不会出现中位数丢失的情况。



算法时间及空间复杂度分析:

时间复杂度:每一次调用的过程为判断余下数组长度是否大于2,接下来判断数组个数是奇数个还是偶数个,最后判断两个数组的中位数谁大谁小。所以t(n) = O(1)+O(1)+O(1)。总共执行次数为logn次。在主函数中,执行的语句为创建两个数组还有数组左右下标等变量,和为数组赋值。所以总的时间复杂度为T(n) = logn*t(n)+O(n)+O(1) = O(logn)。

 

空间复杂度:算法中辅助空间并不随着数组长度n而线性增大,所以空间复杂度为O(1)。


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值