解题报告:Codeforces Round #432 (Div. 2) D. Arpa and a list of numbers 暴力

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77847872

题目链接


题意:

给定一个序列含n个数,定义这个序列为good当序列里的所有数的gcd>1,你有两种操作:

1:删除一个数,代价为x

2:将一个数加一,代价为y

求把序列变成good的最小代价


思路:

如果知道gcd,可以在O(n)内求出最小代价

可以发现性质:当n个数中公因子越多,选这个公因子做gcd需要变动的数越少,代价可能会越低

于是枚举时限内尽可能多的含的越多的素因子,计算最小代价即可


代码:

#include<bits/stdc++.h>

const int N = 1e6+10;
using namespace std;

vector<int>pr;
bool Np[N];
int pos[N];
void init(){
   for(int i=2;i<N;i++){
      if(!Np[i])pr.emplace_back(i);
      for(int j=0,k=pr[0]*i;k<N;k=pr[++j]*i){
         Np[k] = true;
         if(i%pr[j]==0)break;
      }
   }
}
int n,x,y,A[N],num[N];

long long work(int d){
   long long res = 0;
   for(int i=1;i<d;++i){
      long long cost = min(1LL*x,1LL*(d-i)*y);
      for(int j=i;j<N;j+=d)res += cost * A[j];
   }return res;
}

bool cmp(int a,int b){
   return num[a]!=num[b]?num[a]>num[b]:a<b;
}

int main()
{
   init();

   scanf("%d%d%d",&n,&x,&y);
   for(int i=0,t;i<n;++i){
      scanf("%d",&t);++A[t];
   }
   for(int i=0;i<pr.size();++i){pos[i] = i;
      for(int j=pr[i];j<N;j+=pr[i])num[i] += A[j];
   }sort(pos,pos+pr.size(),cmp);
   long long ans = 1e18;
   for(int i=0,ed=min(100,(int)pr.size());i<ed;i++)ans = min(ans,work(pr[pos[i]]));
   printf("%lld\n",ans);
   return 0;
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页