参考资料:
- https://blog.csdn.net/qq_41754350/article/details/81460643
- https://blog.csdn.net/qq_41754350/article/details/81271567
- https://zhuanlan.zhihu.com/p/34922624
Prim算法
Prim针对点,而Kruskal针对边。Prim只适合无向带权图。维持一个集合,一开始选定一个点作为初始集合,另维持一个prev和dist列表。dist列表表示初始集合到其余所有点的距离,prev表示新加入集合的节点的前一个节点。它的加入策略是:不属于集合的且离集合最近的点。
即:Prim算法不断加入节点,直到所有节点都加入集合。
需要注意Prim和Dijkstra算法很相似,Dijkstra也是维持一个节点列表,并不断往集合中添加节点,但是Dijkstra也适合有向图,而且Dijkstra计算的是单一源节点到其余所有节点的最短距离,而Prim生成的是使得所有边的权值之和最小。
Kruskal算法
Kruskal算法是针对边的算法,采用并查集的方法。其首先以每个顶点单独作为一个集合,然后对所有边进行排序,选取最短的边,如果该边中两个节点不属于同一个并查集,那么就将这两个节点所属的并查集合并为同一个并查集,n个节点,共需要n-1条有效边。
并查集:定义一个father列表,一开始每个节点的father都是它自己,然后加入新节点后,新节点的father定义为这个并查集的总的father,然后每次判断两个节点是否在同一个并查集时,只需判断他们father是否相同即可。关于father的查找,可以用father[x] == x来判断,为True,就找到了该并查集的father。
同时father列表也可以用于保存最小生成树的形状。
而如果不需要保存最小生成树的形状,也可以在A、B并查集合并时,让B集中所有元素的father都等于A的father,这样每个节点都能直接找到最终father,能加快速度。
每发现一条有效边时,需要保存其权重,作为最终的权值之和。