机器学习-AUC-ORC-ARIMA

本文探讨了机器学习中的AUC概念,解释了AUC如何衡量分类器性能,指出AUC越大,分类效果越好。同时,介绍了ARIMA模型,这是一种自回归积分滑动平均模型,用于通过历史数据预测未来趋势,如在股票预测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AUC(Area Under Curve)

这里写图片描述
这里写图片描述
取不同的参数值,是的TP,FN,FP,TN的分布不同的曲线图,
这里写图片描述
上述的图的参数取值位置不同,则得到TP,FN,FP,TN不同的值,然后的到TPR和FPR的点,则在图上会表示出一条线(ROC),如果AUC越大(面积越大),则表示分类器则越好;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值