统计学习方法
文章平均质量分 90
LanS__
研一在读
展开
-
《统计学习方法》读书笔记--K近邻法(KNN)
K近邻法基本介绍:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。分布描述为:(1)根据给定的距离度量,在训练集T中找出与实例x最近的K个点,涵盖这k个点的x的领域记为Nk(x)(2)在Nk(x)中,根据分类决策规则,如多数表决,决定x的类别(3)K近邻算法的特殊情况是K=1的情况,称为最近邻算法,对于...原创 2018-10-02 20:58:02 · 169 阅读 · 0 评论 -
SVM支持向量机(一):线性可分支持向量机
一、简介SVM是一种二分类模型目的:寻找一个超平面对样本进行分割分割原则:间隔最大化问题求解方法:将模型转换为一个凸二次规划问题由简至繁的模型包括:1、当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;2、当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;3、当训练样本线性不可分时,通过核技巧和软间隔最大化,学习一个非线性支持向量机;二、线性可...原创 2018-10-15 16:05:14 · 1238 阅读 · 0 评论