【leetcode】870优势洗牌,田忌赛马加强版
田忌赛马的故事:
田忌和齐王赛马,两人的马分上中下三等,如果同等级的马对应着比赛,田忌赢不了齐王。但是田忌遇到了孙膑,孙膑就教他用自己的下等马对齐王的上等马,再用自己的上等马对齐王的中等马,最后用自己的中等马对齐王的下等马,结果三局两胜,田忌赢了。
函数签名如下:
public int[] advantageCount(int[] nums1, int[] nums2) {};
给你输入两个长度相等的数组 nums1
和 nums2
,请你重新组织 nums1
中元素的位置,使得 nums1
的「优势」最大化。
如果 nums1[i] > nums2[i]
,就是说 nums1
在索引 i
上对 nums2[i]
有「优势」。优势最大化也就是说让你重新组织 nums1
,尽可能多的让 nums[i] > nums2[i]
。
比如输入:
nums1 = [12,24,8,32]
nums2 = [13,25,32,11]
你的算法应该返回 [24,32,8,12]
,因为这样排列 nums1
的话有三个元素都有「优势」。
这就像田忌赛马的情景,nums1
就是田忌的马,nums2
就是齐王的马,数组中的元素就是马的战斗力,如何使得田忌的胜场最大化?
将齐王和田忌的马按照战斗力排序,然后按照排名一一对比。如果田忌的马能赢,那就比赛,如果赢不了,那就换个垫底的来送人头。
上述思路的代码逻辑如下:
int n = nums1.length;
sort(nums1); // 田忌的马
sort(nums2); // 齐王的马
// 从最快的马开始比
for (int i = n - 1; i >= 0; i--) {
if (nums1[i] > nums2[i]) {
// 比得过,跟他比
} else {
// 比不过,换个垫底的来送人头
}
}
根据这个思路,我们需要对两个数组排序,但是 nums2
中元素的顺序不能改变,因为计算结果的顺序依赖 nums2
的顺序,所以不能直接对 nums2
进行排序,而是利用其他数据结构来辅助。
同时,解法还会用到双指针技巧 双指针技巧汇总:
int[] advantageCount(int[] nums1, int[] nums2) {
int n = nums1.length;
// 给 nums2 降序排序
PriorityQueue<int[]> maxpq = new PriorityQueue<>(
(int[] pair1, int[] pair2) -> {
return pair2[1] - pair1[1];
}
);
for (int i = 0; i < n; i++) {
maxpq.offer(new int[]{i, nums2[i]});
}
// 给 nums1 升序排序
Arrays.sort(nums1);
// nums1[left] 是最小值,nums1[right] 是最大值
int left = 0, right = n - 1;
int[] res = new int[n];
while (!maxpq.isEmpty()) {
int[] pair = maxpq.poll();
// maxval 是 nums2 中的最大值,index 是对应索引
int index = pair[0], maxval = pair[1];
if (maxval < nums1[right]) {
// 如果 nums1[right] 能胜过 maxval,那就直接上
res[index] = nums1[right];
right--;
} else {
// 战胜不过,就用最小值去送
res[index] = nums1[left];
left++;
}
}
return res;
}
其代码实现上用到了双指针技巧,从最快的马开始,比得过就比,比不过就拿最差的送,这样就能对任意数量的马求取一个最优的比赛策略了。