Mac使用PlaidML加速强化学习训练

本文介绍PlaidML,一款使NVIDIA、AMD和Intel显卡都能用于深度学习训练的工具。通过PlaidML,用户可在Keras、ONNX和nGraph等环境下轻松调用GPU资源。文章详细讲解了在MacBook上安装PlaidML并利用GPU运行CNN的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PlaidML项目地址:https://github.com/plaidml/plaidml

目前 PlaidML 已经支持 Keras、ONNX 和 nGraph 等工具,直接用 Keras 建个模,MacBook 轻轻松松调用 GPU。
通过这款名为 PlaidML 的工具,不论英伟达、AMD 还是英特尔显卡都可以轻松搞定深度学习训练了。
下面进入正题👇

如何用自己笔记本电脑的 GPU 运行一个简单的 CNN(建议在虚拟环境中操作)
  1. Install PlaidML with Keras:pip install plaidml-keras
    记住一点,标准 TensorFlow 框架下的 Keras 无法使用 PlaidML,需要安装 PlaidML 定制的 Keras。
  2. Now setup PlaidML to use the right device:plaidml-setup
  3. 我们首先会看到一个欢迎页面,并跳出一个问题,即是否要使用实验性设备。根据提示,允许实验设备会导致系统运行不佳、崩溃和其他故障。我们可以键入「n」或「nothing」,然后返回选择使用默认设备。
    在这里插入图片描述
    现在得到了自己选择的设备列表。以作者的电脑 Macbook Pro 15’2018 为例,设备列表如下:
    (1)CPU
    (2)英特尔 UHD Graphics 630 显卡
    (3)AMD Radeon pro 560x 显卡
    在这里插入图片描述
    最后,键入「y」或「nothing」,返回保存设置。这样以来,我们就已安装所有设备,并且可以使用 GPU 来运行深度学习项目了。
  4. 按顺序运行以下代码,将 PlaidML 用作 Keras 后端,否则会默认使用 TensorFlow。
# Importing PlaidML. Make sure you follow this order
import plaidml.keras
plaidml.keras.install_backend()
import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"

# then you can write your codes
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

if __name__ == "__main__":
	pass
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值