洛谷 p1004 方格取数 双线dp

题目描述

设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放

人数字0。如下图所示(见样例):

A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B
某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B

点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个

表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式:
只需输出一个整数,表示2条路径上取得的最大的和。

输入输出样例

输入样例#1:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:
67
说明

NOIP 2000 提高组第四题

题目链接

这个双线dp是可以走重复路的
之前的那个是不能走重复路的

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int dp[55][55][55][55];
int dx[55][55];
int main()
{
    int n;
    while(cin>>n)
    {
        memset(dx,0,sizeof(dx));
        memset(dp,0,sizeof(dp));
        int x,y,z;
        for(;;)
        {
            cin>>x>>y>>z;
            if(x==0&&y==0&&z==0) break;
            dx[x][y]=z;

        }
        int x1,x2,y1,y2;
        for(int x1=1;x1<=n;x1++)
        {
            for(int x2=1;x2<=n;x2++)
            {
                for(int y1=1;y1<=n;y1++)
                {
                    for(int y2=1;y2<=n;y2++)
                    {

                        int a=dp[x1-1][y1][x2-1][y2];
                        int b=dp[x1-1][y1][x2][y2-1];
                        int c=dp[x1][y1-1][x2-1][y2];
                        int e=dp[x1][y1-1][x2][y2-1];
                        int z;
                        //cout<<x1<<' '<<y1<<' '<<x2<<' '<<y2<<endl;
                        if(x1!=x2||y1!=y2)
                        {
                            z=dx[x1][y1]+dx[x2][y2];
                            dp[x1][y1][x2][y2]=max(a+z,max(b+z,max(c+z,e+z)));
                        }
                        else
                        {

                            z=dx[x1][y1];
                            dp[x1][y1][x2][y2]=max(a+z,max(b+z,max(c+z,e+z)));//重复路径只加一个
                        }
                    }
                }
            }
        }
        cout<<dp[n][n][n][n]<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值