题目描述
设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放
人数字0。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B
某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B
点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个
表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式:
只需输出一个整数,表示2条路径上取得的最大的和。
输入输出样例
输入样例#1:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:
67
说明
NOIP 2000 提高组第四题
这个双线dp是可以走重复路的
之前的那个是不能走重复路的
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int dp[55][55][55][55];
int dx[55][55];
int main()
{
int n;
while(cin>>n)
{
memset(dx,0,sizeof(dx));
memset(dp,0,sizeof(dp));
int x,y,z;
for(;;)
{
cin>>x>>y>>z;
if(x==0&&y==0&&z==0) break;
dx[x][y]=z;
}
int x1,x2,y1,y2;
for(int x1=1;x1<=n;x1++)
{
for(int x2=1;x2<=n;x2++)
{
for(int y1=1;y1<=n;y1++)
{
for(int y2=1;y2<=n;y2++)
{
int a=dp[x1-1][y1][x2-1][y2];
int b=dp[x1-1][y1][x2][y2-1];
int c=dp[x1][y1-1][x2-1][y2];
int e=dp[x1][y1-1][x2][y2-1];
int z;
//cout<<x1<<' '<<y1<<' '<<x2<<' '<<y2<<endl;
if(x1!=x2||y1!=y2)
{
z=dx[x1][y1]+dx[x2][y2];
dp[x1][y1][x2][y2]=max(a+z,max(b+z,max(c+z,e+z)));
}
else
{
z=dx[x1][y1];
dp[x1][y1][x2][y2]=max(a+z,max(b+z,max(c+z,e+z)));//重复路径只加一个
}
}
}
}
}
cout<<dp[n][n][n][n]<<endl;
}
}