理论基础
回溯其实是一种搜索方式,回溯离不开递归。
回溯的方法通常用来解决以下问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯法解决问题的过程可以抽象为一颗高度有限的n叉树。
回溯法的模板:
- 回溯函数模板返回值以及参数
void backtracking(参数)
- 回溯函数终止条件
if (终止条件) {
存放结果;
return;
}
- 回溯搜索的遍历过程
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
77.组合
思路:套用回溯的模板方法就能解决该问题
代码实现如下
class Solution {
// 存放符合条件结果的集合
List<List<Integer>> result = new ArrayList<>();
// 用来存放符合条件单一结果
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
private void backtracking(int n,int k,int startIndex){
// 终止条件
if (path.size() == k) {
result.add(new ArrayList<>(path));
return;
}
// 单层递归逻辑
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
// 处理节点
path.add(i);
// 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
backtracking(n, k, i + 1);
// 回溯,撤销处理的节点
path.removeLast();
}
}
}