Day24-[回溯算法]开篇引入

文章介绍了如何使用回溯算法解决组合问题,展示了未优化和优化后的Python代码实现。优化主要体现在for循环的范围上,通过减少无效的遍历来提升效率。回溯算法的核心是横向遍历和纵向递归,同时进行了路径剪枝以提高性能。
摘要由CSDN通过智能技术生成

代码随想录算法训练营Day24

77. Combinations

回溯算法 核心精神: for循环横向遍历,递归纵向遍历,回溯不断调整结果集

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        # 提示使用回溯算法
        res = []
        path = []
        def backtrack(n, k, StartIndex):
            if len(path) == k:
                res.append(path[:])
                return
            for i in range(StartIndex, n + 1):
                path.append(i)
                backtrack(n, k, i+1)
                path.pop() # 回溯
        backtrack(n, k, 1)
        return res

剪枝优化:

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        res=[]  #存放符合条件结果的集合
        path=[]  #用来存放符合条件结果
        def backtrack(n,k,startIndex):
            if len(path) == k:
                res.append(path[:])
                return
            for i in range(startIndex,n-(k-len(path))+2):  #优化的地方
                path.append(i)  #处理节点 
                backtrack(n,k,i+1)  #递归
                path.pop()  #回溯,撤销处理的节点
        backtrack(n,k,1)
        return res

因为nums = [0, …, n], 所以未优化时, i in range(startIndex, n+1), 注意startIndex从1开始.

优化:

  • 还差k-len(path)个元素
  • element(not index)最多逆向取k-len(path)-1, 因为此时,新元素还没有append进去
  • “要取到n, 需要range(n+1)”, 同理, n - (k-len(path)-1) + 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值