算法训练day44-动态规划-爬楼梯、零钱兑换、完全平方数

70. 爬楼梯 (进阶)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

解题思路

本题是一个常规动归的题目,其公式就是求解斐波那契额数列的公式,dp[i] = dp[i-1] + dp[i-2]

不过如果稍微改动一下题目,不限制每次爬的台阶数,一次可以爬1,2...m台阶,那么一共可以有多少种方法呢?

这样就变成了完全背包问题了

  1. 确定dp数组含义

dp[j] 表示跳到j阶台阶一共有dp[j] 种方式。

  1. 确定递推公式

完全背包递推公式:dp[j]+=dp[j-nums[i]];

那么对于本题递推公式如下:

dp[j] +=dp[j-i]

  1. 初始化

dp[0] = 1;其他都初始化为0

  1. 确定遍历顺序

因为要求的是一共有多少种方法,那么元素的顺序不同是不同的组合,所以是排列问题。

应该先遍历背包,且内层从小到大遍历

  1. 验证dp

代码示例-java

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        int[] weight = {1,2};
        dp[0] = 1;

        for (int i = 0; i <= n; i++) {
            for (int j = 0; j < weight.length; j++) {
                if (i >= weight[j]) dp[i] += dp[i - weight[j]];
            }
        }

        return dp[n];
    }
}

322. 零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

解题思路

本题与518.零钱兑换II 非常相似,区别在于本题的每种硬币数量无限,所以是一个完全背包问题。

仍然适用普遍的完全背包解法:

  1. 确定dp数组含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  1. 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  1. 初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j]) 比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

  1. 确定遍历顺序

组合问题,所以:

采用coins放在外循环,target在内循环的方式。

代码示例-java

class Solution {
    public int coinChange(int[] coins, int amount) {
       int max = Integer.MAX_VALUE;
       // 定义dp数组
       int[]  dp = new int[amount+1];
       // 初始化
       for(int i=0;i<dp.length;i++){
          dp[i]  = max;
       }
       // 当j为0时,最少需要0个硬币
       dp[0] = 0;
       // 遍历,内层正序
       for(int i=0;i<coins.length;i++){
           for(int j=coins[i];j<=amount;j++){
               if(dp[j-coins[i]]!= max){
                   dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
               }
           }
       }
       return dp[amount] == max ? -1 : dp[amount];
    }
}

完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

解题思路

本题可以抽象为一个完全背包问题

抽象后:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?这与322题十分相似,所以可以采用相同的思路求解。

  1. 确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  1. 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],

所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  1. dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  1. 确定遍历顺序

因为不同的元素顺序是同一种组合,所以这是个求组合的问题。

遍历顺序不影响结果。故先遍历物品后背包或者相反都可。

代码示例-java

class Solution {
    public int numSquares(int n) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[n + 1];
        //初始化
        for (int j = 0; j <= n; j++) {
            dp[j] = max;
        }
        //当和为0时,组合的个数为0
        dp[0] = 0;
        // 遍历物品
        for (int i = 1; i * i <= n; i++) {
            // 遍历背包
            for (int j = i * i; j <= n; j++) {
                if (dp[j - i * i] != max) {
                    dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
                }
            }
        }
        return dp[n];
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值