算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数

文章探讨了使用动态规划解决三类问题:爬楼梯的进阶版本,允许一步一阶、两阶或更多;零钱兑换,寻找凑成总金额的最少硬币数;以及完全平方数问题,找到和为给定数的最少完全平方数个数。每个问题都涉及定义dp数组,确定递推公式和初始化策略,并通过例子进行解释。
摘要由CSDN通过智能技术生成

算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数

爬楼梯 (进阶)

70. 爬楼梯 - 力扣(LeetCode)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

  1. 确定dp数组以及下标的含义

    dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

  2. 确定递推公式

    本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

    那么递推公式为:dp[i] += dp[i - j]

  3. dp数组如何初始化

    既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

  4. 确定遍历顺序

    这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

    所以需将target放在外循环,将nums放在内循环。

    每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  5. 举例来推导dp数组

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n+1];
        dp[0] = 1;
        for (int i = 0; i <=n; i++) {
            for (int j = 1; j <=2; j++) {
               if(i>=j) dp[i]+=dp[i-j];
            }
        }
        return dp[n];
    }
}

零钱兑换

322. 零钱兑换 - 力扣(LeetCode)

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

  1. 确定dp数组以及下标的含义

    dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  2. 确定递推公式

    凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

    所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

    递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  3. dp数组初始化

    首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

    其他下标对应的数值呢?

    考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值。

  4. 确定遍历顺序

    本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

  5. 举例推导dp数组

    以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述

dp[amount]为最终结果。

class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = amount + 1;
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, max);
        dp[0] = 0;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                if (dp[j - coins[i]]  != max) {
                    dp[j] = Math.min(dp[j - coins[i]] + 1, dp[j]);
                }
            }
        }
        return dp[amount] == max ? -1 : dp[amount];
    }
}

完全平方数

279. 完全平方数 - 力扣(LeetCode)

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

  1. 确定dp数组(dp table)以及下标的含义

    dp[j]:和为j的完全平方数的最少数量为dp[j]

  2. 定递推公式

    dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

    此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  3. dp数组如何初始化

    dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

    非0下标的dp[j]应该是多少呢?

    从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  4. 确定遍历顺序

    本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

  5. 举例推导dp数组

    已输入n为5例,dp状态图如下:

在这里插入图片描述

class Solution {
    public int numSquares(int n) {
        int max = n+1;
        int[] dp = new int[n+1];
        Arrays.fill(dp,max);
        dp[0]= 0 ;
        for (int i=0;i*i<=n;i++){
            for (int j = i*i; j <=n; j++) {
                if (dp[j-i*i]!=max)
                dp[j] = Math.min(dp[j-i*i]+1,dp[j]);
            }
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还是选择了面包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值