codeforces 632E(FFT+分治)

该博客介绍了如何利用快速傅里叶变换(FFT)和分治策略解决codeforces上的632E问题。题目要求在给定的n个数中选择k个求和,并按顺序输出所有可能的和。当k为2时,可以通过计算母函数并优化到O(n*log(n))的时间复杂度。为了应对更大的k值,博主提出了一个优化后的分治策略,将时间复杂度降低到O(n*1000*log(n*1000)*log(k)),并特别指出需要处理系数以避免精度问题。
摘要由CSDN通过智能技术生成

题意:给你n个数 ,从中任意取k个求和,将所有可能的和从小到达输出
其中 n,k,ai<=1000
分析: 当k=2时,我们可以考虑母函数来做
f(x)=(xa1++xan)(xa1++xan)
那么 f(x) 所有的系数大于0的项的次数就是答案
计算 f(x) 可以考虑快速傅里叶变换进行优化 时间复杂度是 O(nlog(n))
而原题是K,考虑分治倍增的思想,我们可以优化到 O(n1000log(n1000)log(k))
然而我们需要在每次 FFT 后将系数大于1的置为系数为1的以防止爆精度
下附代码

#include<bits/stdc++.h>
using namespace std;


typedef long long LL;
const LL kMaxn = 3000;
typedef long double ld;
const double kPi = acos(-1.0);
int len, n,a[kMaxn];


struct Complex {
    double r, i;
    Complex(double r = 0, double i = 0):r(r), i(i) {};
    Complex operator + (const Complex & rhs) {
        return Complex(r + rhs.r, i + rhs.i);
    }
    Complex operator - (const Complex & rhs) {
        return Complex(r - rhs.r, i - rhs.i);
    }
    Complex operator * (const Complex &rhs) {
        return Complex(r * rhs.r - i * rhs.i, i * rhs.r + r * rhs.i);
    }
};

void Rader(Complex F[], int len) {
    int j = len >> 1;
    for(int i = 1; i < len - 1; i++) {
        if(i < j) swap(F[i], F[j]);
        int k = len >> 1;
        while(j >= k) {
            j -= k;
            k >>= 1;
        }
        if(j < k) j += k;
    }
}

void FFT(Complex F[], int len, int t) { //时域转频域
    Rader(F, len);
    for(int h = 2; h <= len; h <<= 1) {
        Complex wn(cos(-t*2*kPi/h), sin(-t*2*kPi/h));
        for(int j = 0; j < len; j += h) {
            Complex E(1, 0);
            for(int k = j; k < j + h / 2; k++) {
                Complex u = F[k];
                Complex v = E*F[k+h/2];
                F[k] = u + v;
                F[k+h/2] = u - v;
                E = E * wn;
            }
        }
    }
    if(t == -1) {
        for(int i = 0; i < len; i++) {
            F[i].r /= len;
        }
    }
}
Complex x1[kMaxn*kMaxn], x2[kMaxn*kMaxn], x3[kMaxn*kMaxn];

void solve(int m) {  //倍增的思想
    if (m == 1)
        return;
         while (len <= 1000*m)
        len <<= 1;
    solve(m/2);
    FFT(x1, len, 1);
    FFT(x2, len, 1);
    for (int i = 0; i < len; i++) {
        x1[i] = x1[i] * x2[i];
    }
    FFT(x1, len, -1);
    for (int i = 0; i < len; i++)
        if (x1[i].r > 0.5) x1[i] = x2[i] = Complex(1, 0);//如果系数大于1 就设置成1
        else  x1[i] = x2[i] = Complex(0, 0);

    if (m&1) {
        FFT(x1, len, 1);
        FFT(x3, len, 1);
        for (int i = 0; i < len; i++) {
            x1[i] = x1[i] * x3[i];
        }
        FFT(x1, len, -1);
        FFT(x3, len, -1);
        for (int i = 0; i < len; i++)
            if (x1[i].r > 0.5)
                x1[i] = x2[i] = Complex(1, 0);
            else
                x1[i] = x2[i] = Complex(0, 0);
        for (int i = 0; i < len; i++)
            if (x3[i].r > 0.5)
                x3[i] = Complex(1, 0);
            else
                x3[i] = Complex(0, 0);
    }
}
int main()
{
    int k;
    scanf("%d%d", &n, &k);
    len = 1024;
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        x1[a[i]] = x2[a[i]] = x3[a[i]] = Complex(1, 0);
    }
    solve(k);
    for (int i = 0; i <= 1000*k; i++) {
        if (x1[i].r >= 0.5)
            printf("%d ", i);
    }
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值