TensorFlow模型持久化

  • 持久化代码

  • 保存图

import tensorflow as tf
v1 = tf.Variable(tf.constant(1.0,shape=[1]),name="v1")
v2 = tf.Variable(tf.constant(2.0,shape=[1]),name="v2")
result = v1 + v2
`init_op = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init_op)
    saver.save(sess,"F:\path\model\model.cket")``

生成文件
在这里插入图片描述
model.ckepy.meta 计算图结构
model.ckpt 程序中每个变量取值
checkpoint 一个目录下所有模型文件列表

  • 加载已经保存的TensorFlow模型
import tensorflow as tf
v1 = tf.Variable(tf.constant(1.0,shape=[1]),name="v1")
v2 = tf.Variable(tf.constant(2.0,shape=[1]),name="v2")
result = v1 + v2


saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess,"F:\path\model\model.cket")
    print(sess.run(result))

  • 直接加载已经持久化的图
mport tensorflow as tf
v1 = tf.Variable(tf.constant(1.0,shape=[1]),name="v1")
v2 = tf.Variable(tf.constant(2.0,shape=[1]),name="v2")
result = v1 + v2


saver = tf.train.import_meta_graph(
    "F:\path\model\model.cket\model.ckept.meta")
with tf.Session() as sess:
    saver.restore(sess,"F:\path\model\model.cket")
    print(sess.run(tf.get_default_graph().get_tensor_by_name("add:0")))
  • 使用字典加载部分变量
v1 = tf.Variable(tf.constant(1.0,shape=[1]),name="other-v1")
v2 = tf.Variable(tf.constant(2.0,shape=[1]),name="other-v2")
sever = tf.train.Saver({"v1":v1,"v2":v2})
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值