PyTorch框架下,使用torch.nn.DataParallel进行多卡并行计算中可能会遇到该问题,是由于在多卡运算时主卡设置所导致。在多卡并行计算时,所使用的显卡中必须包含主卡,否则就会产生该问题。
在默认情况下,标号为0的显卡为主卡,如主机中有8块显卡,那么每张显卡的默认标号为[0,1,2,3,4,5,6,7],主卡为0号显卡,在多卡并行计算时,必须使用0号显卡,因为该显卡为主卡。如下代码中,主卡没有参与运算,就会导致该错误。
model = torch.nn.DataParallel(model, device_ids=[1,2,3]).cuda()
如下,将0号显卡即主卡参与运算即可解决该问题。
model = torch.nn.DataParallel(model, device_ids=[0,2,3]).cuda()
那么,如果将其他显卡设置为主卡呢?
通过os.environ["CUDA_VISIBLE_DEVICES"]指定所要使用的显卡,如:
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"
.
.
.
model = torch.nn.DataParallel(model, device_ids=[0,2,3]).cuda()
此时,4号显卡就变成了主卡,在使用torch.nn.DataParallel指定运算显卡时,显卡的对应关系如下:
实际显卡编号----->运算显卡编号
4 -----> 0(主卡)
5 -----> 1
6 -----> 2
7 -----> 3
所以,实际所使用到的显卡为编号4,6,7显卡,其中4号为主卡。