RuntimeError: module must have its parameters and buffers on device cuda:1 (device_ids[0]) but found

PyTorch框架下,使用torch.nn.DataParallel进行多卡并行计算中可能会遇到该问题,是由于在多卡运算时主卡设置所导致。在多卡并行计算时,所使用的显卡中必须包含主卡,否则就会产生该问题。

在默认情况下,标号为0的显卡为主卡,如主机中有8块显卡,那么每张显卡的默认标号为[0,1,2,3,4,5,6,7],主卡为0号显卡,在多卡并行计算时,必须使用0号显卡,因为该显卡为主卡。如下代码中,主卡没有参与运算,就会导致该错误。

model = torch.nn.DataParallel(model, device_ids=[1,2,3]).cuda()

如下,将0号显卡即主卡参与运算即可解决该问题。

model = torch.nn.DataParallel(model, device_ids=[0,2,3]).cuda()

那么,如果将其他显卡设置为主卡呢?

通过os.environ["CUDA_VISIBLE_DEVICES"]指定所要使用的显卡,如:

os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"
.
.
.
model = torch.nn.DataParallel(model, device_ids=[0,2,3]).cuda()

此时,4号显卡就变成了主卡,在使用torch.nn.DataParallel指定运算显卡时,显卡的对应关系如下:

实际显卡编号----->运算显卡编号
    4     ----->     0(主卡)
    5     ----->     1
    6     ----->     2
    7     ----->     3

 所以,实际所使用到的显卡为编号4,6,7显卡,其中4号为主卡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值