原题地址:https://leetcode-cn.com/problems/burst-balloons/
题目描述:
有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。每当你戳破一个气球 i 时,你可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。
求所能获得硬币的最大数量。
说明:
你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。
0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
示例:
输入: [3,1,5,8]
输出: 167
解释: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
解题方案:
参考地址:https://blog.csdn.net/jmspan/article/details/51208865
首先是使用动态规划的方法,这个题貌似不能使用动态规划的方法。仔细一想,可以定义二维数组coins,coins[a][b]表示把第a个和第b个气球之间(不含a和b)的气球戳烂,最大能得到的分值。
不知道可以使用分治法怎么解决,先马以后再解决。
代码:
class Solution {
public:
int maxCoins(vector<int>& nums) {
vector<int> dpnums(nums.size() + 2, 1);
for(int i=0, j=1; i < nums.size(); i++, j++)
dpnums[j] = nums[i];
vector<vector<int>> coins(dpnums.size(), vector<int>(dpnums.size(), 0));
for(int i = 2; i < dpnums.size(); i++) {
for(int j = 0; j + i < dpnums.size(); j++) {
for(int k = j + 1; k < j + i; k++) {
coins[j][j+i] = max(coins[j][j+i], coins[j][k] + coins[k][j+i] +
dpnums[j] * dpnums[k] * dpnums[j+i]);
}
}
}
return coins[0][dpnums.size() - 1];
}
};