Pandas进阶柒 缺失数据

Pandas进阶柒 缺失数据

pandas进阶系列根据datawhale远昊大佬的joyful pandas教程写一些自己的心得和补充,本文部分引用了原教程,并参考了《利用Python进行数据分析》、pandas官网
为了方便自己回顾和助教审阅,每一节先将原教程重要知识点罗列一下帮助自己回顾,Nullable章节没做更改,然后在其后写一些自己的心得以及我的习题计算过程

另注:本文是对joyful pandas教程的延伸,完整理解需先阅读joyful pandas教程第七章

一、缺失值的统计和删除

常用操作功能
df.isna().mean()查看各列缺失值的比例
df.isna().sum()查看各列缺失样本数
df[df.col.isna()]利用缺失值索引样本
df[sub_set.isna().all()]多个列的缺失项可以用any,all

1. 缺失信息的统计

缺失数据可以使用isnaisnull(两个函数没有区别)来查看每个单元格是否缺失,结合mean可以计算出每列缺失值的比例:

import numpy as np
import pandas as pd
df = pd.read_csv('../data/learn_pandas.csv', usecols = ['Grade', 'Name', 'Gender', 'Height', 'Weight', 'Transfer'])
df.isna().head(2)
GradeNameGenderHeightWeightTransfer
0FalseFalseFalseFalseFalseFalse
1FalseFalseFalseFalseFalseFalse

如果想要查看某一列缺失或者非缺失的行,可以利用Series上的isna或者notna进行布尔索引。例如,查看身高缺失的行:

df[df.Height.isna()].head(2)
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
12SeniorPeng YouFemaleNaN48.0NaN

如果想要同时对几个列,检索出全部为缺失或者至少有一个缺失或者没有缺失的行,可以使用isna, notnaany, all的组合。例如,对身高、体重和转系情况这3列分别进行这三种情况的检索:

sub_set = df[['Height', 'Weight', 'Transfer']]
df[sub_set.isna().all(1)] # 全部缺失
GradeNameGenderHeightWeightTransfer
102JuniorChengli ZhaoMaleNaNNaNNaN
df[sub_set.isna().any(1)].head(2) # 至少有一个缺失
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
9JuniorJuan XuFemale164.8NaNN

2. 缺失信息的删除

数据处理中经常需要根据缺失值的大小、比例或其他特征来进行行样本或列特征的删除,pandas中提供了dropna函数来进行操作。

dropna的主要参数为轴方向axis(默认为0,即删除行)、删除方式how、删除的非缺失值个数阈值thresh 非 缺 失 值 \color{red}{非缺失值} 没有达到这个数量的相应维度会被删除)、备选的删除子集subset,其中how主要有anyall两种参数可以选择。

例如,删除身高体重至少有一个缺失的行:

res = df.dropna(how = 'any', subset = ['Height', 'Weight'])
res.shape
(174, 6)

例如,删除超过15个缺失值的列:

res = df.dropna(1, thresh=df.shape[0]-15) # 身高被删除
res.head(2)
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N

当然,不用dropna同样是可行的,例如上述的两个操作,也可以使用布尔索引来完成:

res = df.loc[df[['Height', 'Weight']].notna().all(1)]
res.shape
(174, 6)
res = df.loc[:, ~(df.isna().sum()>15)]
res.head()
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N
2SeniorMei SunMale89.0N
3SophomoreXiaojuan SunFemale41.0N
4SophomoreGaojuan YouMale74.0N

【应用场景】
下图是我之前做的贷款违约预测的比赛,里面的缺失值情况。可以看到存在多列同时缺失的情况,当时我的处理方法是统计缺失的列超过阈值的项,删除那些项,现在学习了缺失值处理之后发现可以直接用dropna确定阈值来删除,不过一定要注意dropna的thresh参数的含义是非缺失值没有达到这个阈值会被删除
在这里插入图片描述

二、缺失值的填充和插值

1. 利用fillna进行填充

填充方案:

  • value: 可以是标量,也可以是字典(Series也可以看做是一种字典)
  • method: ffill, bfill (用前面的或后面的元素填充)
  • limit: 连续缺失值的最大填充次数。
【练一练】

对一个序列以如下规则填充缺失值:如果单独出现的缺失值,就用前后均值填充,如果连续出现的缺失值就不填充,即序列[1, NaN, 3, NaN, NaN]填充后为[1, 2, 3, NaN, NaN],请利用fillna函数实现。(提示:利用limit参数)

【我的思路】

单独出现的缺失值可以用limit=1检索出来,要前后均值来填充所以考虑使用参数method,而填充方法里只有前项填充和后项填充,因此在两个方向都填充一次取平均值即可

s = pd.Series([None, 1, None, 3, None, None, 5, None, None])
s.values
array([nan,  1., nan,  3., nan, nan,  5., nan, nan])
res = (s.fillna(method='ffill', limit=1)+s.fillna(method='bfill', limit=1))/2
res.values
array([nan,  1.,  2.,  3., nan, nan,  5., nan, nan])
【END】

2. 插值函数interpolate

  • method
    • linear 利用空值两边最近的非缺失值的线性关系插值
    • nearest 缺失值的元素和离它最近的非缺失值元素一样
    • index 考虑索引进行插值
    • polynomial: 调用scipy.interpolate.interp1d函数,需要传递order参数,代表多项式的最高幂次
    • spline
  • limit_direction: 与fillna中类似,有forword, backword, both, 顾名思义
  • limit: 限制连续填充的最大数量
s = pd.Series([np.nan, np.nan, 1, np.nan, np.nan, np.nan, 2, np.nan, 3, np.nan, np.nan])
s.values
array([nan, nan,  1., nan, nan, nan,  2., nan,  3., nan, nan])

这里为了弄明白线性插值的原理,将原教程中的数据改造成上述数据,先不使用limit,并把所有值都填满(默认情况使用ffill不会全部填满)看一下插值结果。

s.interpolate(limit_direction='both').values
array([1.  , 1.  , 1.  , 1.25, 1.5 , 1.75, 2.  , 2.5 , 3.  , 3.  , 3.  ])

可以看出线性插值的方法有如下特点:

  1. 两端的空值(存在一个方向没有值)的填充值等于有值的一边最近的值
  2. 两个方向存在值的空值的填充是按照两边最近的两个值,与空值的距离关系填充值的,因此在上面的例子中1与2中填充了1.25,1.5,1.75,2与3中填充了2.5,并不是按照所有数据的线性关系考虑的,仅考虑空值两边最近的两个值

再加入limit参数看一下,与上面的例子对比,每个位置的空值的填充值不改变,limit只决定哪些值被填充

res = s.interpolate(limit_direction='backward', limit=1)
res.values
array([ nan, 1.  , 1.  ,  nan,  nan, 1.75, 2.  , 2.5 , 3.  ,  nan,  nan])

第二种常见的插值是最近邻插补,即缺失值的元素和离它最近的非缺失值元素一样:

s.interpolate('nearest').values
array([nan, nan,  1.,  1.,  1.,  2.,  2.,  2.,  3., nan, nan])

最后来介绍索引插值,即根据索引大小进行线性插值。例如,构造不等间距的索引进行演示:

s = pd.Series([0,np.nan,4],index=[0,1,2])
s
0    0.0
1    NaN
2    4.0
dtype: float64
s.interpolate() # 默认的线性插值,等价于计算中点的值
0    0.0
1    2.0
2    4.0
dtype: float64
s.interpolate(method='index') # 和索引有关的线性插值,计算相应索引大小对应的值
0    0.0
1    2.0
2    4.0
dtype: float64

同时,这种方法对于时间戳索引也是可以使用的,有关时间序列的其他话题会在第十章进行讨论,这里举一个简单的例子:

s = pd.Series([0,np.nan,10], index=pd.to_datetime(['20200101', '20200102', '20200111']))
s
2020-01-01     0.0
2020-01-02     NaN
2020-01-11    10.0
dtype: float64
s.interpolate()
2020-01-01     0.0
2020-01-02     5.0
2020-01-11    10.0
dtype: float64
s.interpolate(method='index')
2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64

试下多项式插值,这两种原理还是没太弄懂,看了下scipy的包他们是需要fit的,不过不知道在pandas里是怎么fit的,order=1的时候等同于线性插值

s.interpolate(method='polynomial', order=1)
2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64
s.interpolate(method='spline', order=1)
2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64

三、Nullable类型

1. 缺失记号及其缺陷

  • python中None==None 结果为True, 与其他元素均不相等
  • numpy中np.nan 和任何元素都不相等
  • 使用Series的equals检验相同性时会跳过两个表都是nan值的地方

注:这部分相较于原教程没有新加的内容,由于Nullable类型第一次见识到,所以这块内容我没有删除,随时遇到问题回来回顾

在时间序列的对象中,pandas利用pd.NaT来指代缺失值,它的作用和np.nan是一致的(时间序列的对象和构造将在第十章讨论):

pd.to_timedelta(['30s', np.nan]) # Timedelta中的NaT
TimedeltaIndex(['0 days 00:00:30', NaT], dtype='timedelta64[ns]', freq=None)
pd.to_datetime(['20200101', np.nan]) # Datetime中的NaT
DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]', freq=None)

那么为什么要引入pd.NaT来表示时间对象中的缺失呢?仍然以np.nan的形式存放会有什么问题?在pandas中可以看到object类型的对象,而object是一种混杂对象类型,如果出现了多个类型的元素同时存储在Series中,它的类型就会变成object。例如,同时存放整数和字符串的列表:

pd.Series([1, 'two'])
0      1
1    two
dtype: object

NaT问题的根源来自于np.nan的本身是一种浮点类型,而如果浮点和时间类型混合存储,如果不设计新的内置缺失类型来处理,就会变成含糊不清的object类型,这显然是不希望看到的。

type(np.nan)
float

同时,由于np.nan的浮点性质,如果在一个整数的Series中出现缺失,那么其类型会转变为float64;而如果在一个布尔类型的序列中出现缺失,那么其类型就会转为object而不是bool

pd.Series([1, np.nan]).dtype
dtype('float64')
pd.Series([True, False, np.nan]).dtype
dtype('O')

因此,在进入1.0.0版本后,pandas尝试设计了一种新的缺失类型pd.NA以及三种Nullable序列类型来应对这些缺陷,它们分别是Int, booleanstring

2. Nullable类型的性质

从字面意义上看Nullable就是可空的,言下之意就是序列类型不受缺失值的影响。例如,在上述三个Nullable类型中存储缺失值,都会转为pandas内置的pd.NA

pd.Series([np.nan, 1], dtype = 'Int64') # "i"是大写的
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, True], dtype = 'boolean')
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 'my_str'], dtype = 'string')
0      <NA>
1    my_str
dtype: string

Int的序列中,返回的结果会尽可能地成为Nullable的类型:

pd.Series([np.nan, 0], dtype = 'Int64') + 1
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, 0], dtype = 'Int64') == 0
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 0], dtype = 'Int64') * 0.5 # 只能是浮点
0    NaN
1    0.0
dtype: float64

对于boolean类型的序列而言,其和bool序列的行为主要有两点区别:

第一点是带有缺失的布尔列表无法进行索引器中的选择,而boolean会把缺失值看作False

s = pd.Series(['a', 'b'])
s_bool = pd.Series([True, np.nan])
s_boolean = pd.Series([True, np.nan]).astype('boolean')
# s[s_bool] # 报错
s[s_boolean]
0    a
dtype: object

第二点是在进行逻辑运算时,bool类型在缺失处返回的永远是False,而boolean会根据逻辑运算是否能确定唯一结果来返回相应的值。那什么叫能否确定唯一结果呢?举个简单例子:True | pd.NA中无论缺失值为什么值,必然返回TrueFalse | pd.NA中的结果会根据缺失值取值的不同而变化,此时返回pd.NAFalse & pd.NA中无论缺失值为什么值,必然返回False

s_boolean & True
0    True
1    <NA>
dtype: boolean
s_boolean | True
0    True
1    True
dtype: boolean
~s_boolean # 取反操作同样是无法唯一地判断缺失结果
0    False
1     <NA>
dtype: boolean

关于string类型的具体性质将在下一章文本数据中进行讨论。

一般在实际数据处理时,可以在数据集读入后,先通过convert_dtypes转为Nullable类型:

df = pd.read_csv('../data/learn_pandas.csv')
df = df.convert_dtypes()
df.dtypes
School          string
Grade           string
Name            string
Gender          string
Height         float64
Weight           Int64
Transfer        string
Test_Number      Int64
Test_Date       string
Time_Record     string
dtype: object

3. 缺失数据的计算和分组

当调用函数sum, prob使用加法和乘法的时候,缺失数据等价于被分别视作0和1,即不改变原来的计算结果:

s = pd.Series([2,3,np.nan,4,5])
s.sum()
14.0
s.prod()
120.0

当使用累计函数时,会自动跳过缺失值所处的位置:

s.cumsum()
0     2.0
1     5.0
2     NaN
3     9.0
4    14.0
dtype: float64

当进行单个标量运算的时候,除了np.nan ** 01 ** np.nan这两种情况为确定的值之外,所有运算结果全为缺失(pd.NA的行为与此一致 ),并且np.nan在比较操作时一定返回False,而pd.NA返回pd.NA

np.nan == 0
False
pd.NA == 0
<NA>
np.nan > 0
False
pd.NA > 0
<NA>
np.nan + 1
nan
np.log(np.nan)
nan
np.add(np.nan, 1)
nan
np.nan ** 0
1.0
pd.NA ** 0
1
1 ** np.nan
1.0
1 ** pd.NA
1

另外需要注意的是,diff, pct_change这两个函数虽然功能相似,但是对于缺失的处理不同,前者凡是参与缺失计算的部分全部设为了缺失值,而后者缺失值位置会被设为 0% 的变化率:

s.diff()
0    NaN
1    1.0
2    NaN
3    NaN
4    1.0
dtype: float64
s.pct_change()
0         NaN
1    0.500000
2    0.000000
3    0.333333
4    0.250000
dtype: float64

对于一些函数而言,缺失可以作为一个类别处理,例如在groupby, get_dummies中可以设置相应的参数来进行增加缺失类别:

df_nan = pd.DataFrame({'category':['a','a','b',np.nan,np.nan], 'value':[1,3,5,7,9]})
df_nan
categoryvalue
0a1
1a3
2b5
3NaN7
4NaN9
df_nan.groupby('category', dropna=False)['value'].mean() # pandas版本大于1.1.0
category
a      2
b      5
NaN    8
Name: value, dtype: int64
pd.get_dummies(df_nan.category, dummy_na=True)
abNaN
0100
1100
2010
3001
4001

四、练习

Ex1:缺失值与类别的相关性检验

在数据处理中,含有过多缺失值的列往往会被删除,除非缺失情况与标签强相关。下面有一份关于二分类问题的数据集,其中X_1, X_2为特征变量,y为二分类标签。
事实上,有时缺失值出现或者不出现本身就是一种特征,并且在一些场合下可能与标签的正负是相关的。关于缺失出现与否和标签的正负性,在统计学中可以利用卡方检验来断言它们是否存在相关性。按照特征缺失的正例、特征缺失的负例、特征不缺失的正例、特征不缺失的负例,可以分为四种情况,设它们分别对应的样例数为 n 11 , n 10 , n 01 , n 00 n_{11}, n_{10}, n_{01}, n_{00} n11,n10,n01,n00。假若它们是不相关的,那么特征缺失中正例的理论值,就应该接近于特征缺失总数 × \times ×总体正例的比例,即:

E 11 = n 11 ≈ ( n 11 + n 10 ) × n 11 + n 01 n 11 + n 10 + n 01 + n 00 = F 11 E_{11} = n_{11} \approx (n_{11}+n_{10})\times\frac{n_{11}+n_{01}}{n_{11}+n_{10}+n_{01}+n_{00}} = F_{11} E11=n11(n11+n10)×n11+n10+n01+n00n11+n01=F11

其他的三种情况同理。现将实际值和理论值分别记作 E i j , F i j E_{ij}, F_{ij} Eij,Fij,那么希望下面的统计量越小越好,即代表实际值接近不相关情况的理论值:

S = ∑ i ∈ { 0 , 1 } ∑ j ∈ { 0 , 1 } ( E i j − F i j ) 2 F i j S = \sum_{i\in \{0,1\}}\sum_{j\in \{0,1\}} \frac{(E_{ij}-F_{ij})^2}{F_{ij}} S=i{0,1}j{0,1}Fij(EijFij)2

可以证明上面的统计量近似服从自由度为 1 1 1的卡方分布,即 S ∼ ⋅ χ 2 ( 1 ) S\overset{\cdot}{\sim} \chi^2(1) Sχ2(1)。因此,可通过计算 P ( χ 2 ( 1 ) > S ) P(\chi^2(1)>S) P(χ2(1)>S)的概率来进行相关性的判别,一般认为当此概率小于 0.05 0.05 0.05时缺失情况与标签正负存在相关关系,即不相关条件下的理论值与实际值相差较大。

上面所说的概率即为统计学上关于 2 × 2 2\times2 2×2列联表检验问题的 p p p值, 它可以通过scipy.stats.chi2(S, 1)得到。请根据上面的材料,分别对X_1, X_2列进行检验。

【我的思路】

根据题目要求,应该要求出X_1列的缺失例数,非缺失例数,标签列的正例、负例数来求解2*2的列联表,然后根据列联表的值求公式中的S,代入S求自由度为1的卡方分布的p值。
这里查了一下,可以使用scipy.stats.chi2_contingency来计算两个数组的卡方,其返回值分别是卡方值、p值、自由度和独立时矩阵
X_2列同理

import scipy.stats as st
df = pd.read_csv('../data/missing_chi.csv')
def f(col):
    df[col].where(df[col].isna(), 'not nan', inplace=True)
    df[col].fillna('is nan', inplace=True)
    t = pd.crosstab(df[col], df['y'])
    print(t)
    return t
st.chi2_contingency(f('X_1'))
y          0   1
X_1             
is nan   785  70
not nan  133  12





(0.016298159494174517,
 0.8984146867233628,
 1,
 array([[784.89,  70.11],
        [133.11,  11.89]]))
st.chi2_contingency(f('X_2'))
y          0   1
X_2             
is nan   894   0
not nan   24  82





(743.1188624676491,
 1.2578178884243594e-163,
 1,
 array([[820.692,  73.308],
        [ 97.308,   8.692]]))

上面的数据分别展示了X_1、X_2与标签的列联表、卡方统计值、p值、自由度和假设独立时的矩阵,可以看出,X_1与标签值分布的p值接近0.9,大于0.05,因此不能拒绝X_1与标签独立的假设;X_2与标签值分布的p值为1.25e-163,小于0.05,可以拒绝原假设,因此X_2与标签存在相关关系。

Ex2:用回归模型解决分类问题

KNN是一种监督式学习模型,既可以解决回归问题,又可以解决分类问题。对于分类变量,利用KNN分类模型可以实现其缺失值的插补,思路是度量缺失样本的特征与所有其他样本特征的距离,当给定了模型参数n_neighbors=n时,计算离该样本距离最近的 n n n个样本点中最多的那个类别,并把这个类别作为该样本的缺失预测类别,具体如下图所示,未知的类别被预测为黄色:

在这里插入图片描述

上面有色点的特征数据提供如下:

df = pd.read_excel('../data/color.xlsx', engine='openpyxl')
df.head(3)
X1X2Color
0-2.52.8Blue
1-1.51.8Blue
2-0.82.8Blue

已知待预测的样本点为 X 1 = 0.8 , X 2 = − 0.2 X_1=0.8, X_2=-0.2 X1=0.8,X2=0.2,那么预测类别可以如下写出:

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=6)
clf.fit(df.iloc[:,:2], df.Color)
clf.predict([[0.8, -0.2]])
array(['Yellow'], dtype=object)
  1. 对于回归问题而言,需要得到的是一个具体的数值,因此预测值由最近的 n n n个样本对应的平均值获得。请把上面的这个分类问题转化为回归问题,仅使用KNeighborsRegressor来完成上述的KNeighborsClassifier功能。
  2. 请根据第1问中的方法,对audit数据集中的Employment变量进行缺失值插补。

【我的思路-第一问】

先看一下color的值,有3个,数量较少且没有序数关系,因此可以用one-hot编码来做

df.Color.value_counts()
Green     8
Yellow    8
Blue      7
Name: Color, dtype: int64
from sklearn.neighbors import KNeighborsRegressor
y_train = pd.get_dummies(df.Color)
nn = KNeighborsRegressor(n_neighbors=6)
nn.fit(df.iloc[:,:2], y_train)
nn.predict([[0.8, -0.2]])
array([[0.16666667, 0.33333333, 0.5       ]])
y_train.head(0)
BlueGreenYellow

看一下顺序,可以看出预测是蓝、绿、黄的概率分别为0.17, 0.33, 0.5
因此预测结果应该是Yellow

【我的思路-第二问】

先吐槽一下,竟然还有这样的数据集??!
先查看一下各列缺失值情况,看来只有Employment列存在缺失,另外有几列的值不是数字,需要转换成数字再使用回归

df2 = pd.read_csv('../data/audit.csv')
df2.head(3)
IDAgeEmploymentMaritalIncomeGenderHours
0100464138PrivateUnmarried81838.00Female72
1101022935PrivateAbsent72099.00Male30
2102458732PrivateDivorced154676.74Male40
df2.isna().sum()
ID              0
Age             0
Employment    100
Marital         0
Income          0
Gender          0
Hours           0
dtype: int64
df2.Employment.value_counts()
Private       1411
Consultant     148
PSLocal        119
SelfEmp         79
PSState         72
PSFederal       69
Volunteer        1
Unemployed       1
Name: Employment, dtype: int64
df2.Marital.value_counts()
Married                  917
Absent                   669
Divorced                 266
Unmarried                 67
Widowed                   59
Married-spouse-absent     22
Name: Marital, dtype: int64

可以看出,Employment列和Marital列都是类别,,而且类别数量较多,我选择用sklearn.LabelEncoder,这样其实也不是很好因为会产生自定义的序数关系,不过做起来简单一些
另外Gender列可以换做isMale表达,因此可以直接转换成01序列
ID列应该与结果无关,选择删除
其他列由于值的范围不一样需要归一化处理
以下开始按照上面的分析一个一个处理

data = df2.copy()
data['isMale'] =  data['Gender'].map({'Male':1, 'Female':0})
import sklearn.preprocessing as preprocessing        
def scale_it(cols):
    for col in cols:
        data[col] = preprocessing.MinMaxScaler().fit_transform(np.array(data[col]).reshape(-1,1))

对训练集中的类别变量编码

data['Marital'] = preprocessing.LabelEncoder().fit_transform(data['Marital'])
data.drop(columns=['ID', 'Gender', 'Employment'], inplace=True)
data.head()
AgeMaritalIncomeHoursisMale
038481838.00720
135072099.00301
2321154676.74401
345227743.82551
46027568.23401

归一化处理

scale_cols = data.columns
scale_it(scale_cols)
data['Employment'] = df2['Employment']
na_index = data.Employment.isna()

划分测试集、训练集

test = data[na_index].drop(columns=['Employment'])
train = data[data['Employment'].notna()]
y = train['Employment']
encoder = preprocessing.LabelEncoder()
y = encoder.fit_transform(y)
train.drop(columns = ['Employment'], inplace=True)
train.head()
AgeMaritalIncomeHoursisMale
00.2876710.80.1689970.7244900.0
10.2465750.00.1487350.2959181.0
20.2054790.20.3205390.3979591.0
30.3835620.40.0564530.5510201.0
40.5890410.40.0144770.3979591.0
from sklearn.neighbors import KNeighborsRegressor
nn = KNeighborsRegressor(n_neighbors=6)
nn.fit(train, y)
KNeighborsRegressor(n_neighbors=6)
y_pred = nn.predict(test)
res = test.copy()
res['Employment'] = encoder.inverse_transform(np.round(y_pred).astype('uint8'))
res.head()
AgeMaritalIncomeHoursisMaleEmployment
600.3561640.00.1260440.3979590.0PSState
2220.7534250.40.0312940.0714291.0PSLocal
2260.0684930.20.1675400.3979590.0Private
2600.0136990.00.5358390.1530611.0PSState
2780.0684930.00.1901680.3979591.0Private

这里我测试了一下,发现了fillna的一个新用法,之前只知道fillna可以填个常数或者按method填,这里我自己测试了下用Python list填值,然后报错了,提示我要使用常量或者字典,然后我一想Series类本身就是一种index和value的对应,是不是可以当做字典,然后试了一下惊喜地发现真的可以直接把Series代入来填空值
我这里的res变量存的是加入了预测的label值的测试集

df2.Employment.fillna(res['Employment'], inplace=True)
df2.head()
IDAgeEmploymentMaritalIncomeGenderHours
0100464138PrivateUnmarried81838.00Female72
1101022935PrivateAbsent72099.00Male30
2102458732PrivateDivorced154676.74Male40
3103828845PrivateMarried27743.82Male55
4104422160PrivateMarried7568.23Male40

看一下最新的缺失情况,表明已经都填上了

df2.isna().sum()
ID            0
Age           0
Employment    0
Marital       0
Income        0
Gender        0
Hours         0
dtype: int64

看一下最终填充了缺失值之后的表

df2[na_index].head()
IDAgeEmploymentMaritalIncomeGenderHours
60126493943PSStateAbsent61192.65Female40
222204417572PSLocalMarried15651.39Male8
226206559522PrivateDivorced81137.85Female40
260229818518PSStateAbsent258160.48Male16
278238331222PrivateAbsent92014.13Male40

题目搞定啦!之前正好有个项目,是天池上的贷款违约预测,涉及到空值处理,之前的做法只是简单地删除了一下,觉得用预测填值太麻烦了,看了今天教程的代码发现预测填值的代码可以那么简短!不过这里对一个分类问题用回归算法感觉效果比较差,不过让我有信心回到贷款违约项目上继续做空值处理的优化了!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值