一、mysql索引结构
1.BTree索引
[检索原理]
左边列的表格(真实数据),右边对应一棵树,树的管度越来越管查询越快。
以下图表的名称为:段区块
硬盘都是长方形的,打了一个封装,里面是一个圆圈,由磁盘、磁道、B柱构成。一些数据写在磁道上,根据不同索引内容去磁道读取不同的内容,那么也需要一个存储单位,这个存储单位叫类
【初始化介绍】
(1)一颗b+树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针((黄色所示);
(2)如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。
(3)真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。
(4)非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
【查找过程】
(1)如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找拨到29,结束查询,总计三次IO。
(2)真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
2.Hash索引
3.full-text全文索引
4.R-Tree索引