最小生成树之普里姆算法

//lowcost数组里的值是adjvex数组里的点指向相应下标的点的权值
//lowcost数组保存相关顶点到邻接点(边)的权值,此权值是生成树里的点到该邻接点的最小权值
/*例如:
    0   1   2   3   4   5   6
    A   B   C   D   E   F   G
adjvex: 0   0   0   0   3   3   0
lowcost:0   7   x   0   15  6   x   
lowcost[1]=7的意思是:0顶点(A)(adjvex[1])指向B点(相应下标)的权值
lowcost[4]=15的意思是:3顶点(D)(adjvex[4])指向E(相应下标)的权值



*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef char VertexType;    //顶点类型应由用户定义
typedef int EdgeTyep;       //边上的权值类型应由用户定义

#define MAXVEX 100          //最大顶点数,应由用户定义
#define INFINITY 65535      //用65535来代表无穷大
#define DEBUG

typedef struct Graph{
    VertexType vexs[MAXVEX];    //顶点表
    EdgeTyep   arc[MAXVEX][MAXVEX]; //邻接矩阵,可看作边
    int numVertexes, numEdges;      //图中当前的顶点数和边数
}Graph;

//定位
int Locates(Graph *g, char ch)
{
    int i;
    for(i = 0; i < g->numVertexes; i++)
    {
        if(g->vexs[i] == ch)
            break;
    }
    if(i >= g->numVertexes)
        return -1;
    return i;
}

//建立一个无向网图的邻接矩阵表示
void CreatGraph(Graph *g)
{
    int i, j, w, k;
    printf("please input numVertexes and numEdges\n");
    scanf("%d %d", &(g->numVertexes), &(g->numEdges));
    getchar();//下面要输入字符,所以要吃回车
    #ifdef DEBUG//调试用
    printf("%d %d\n", g->numVertexes, g->numEdges);
    #endif
    for(i = 0; i < g->numVertexes; i++)
    {
        printf("请输入顶点%d:\n", i);
        scanf("%c", &(g->vexs[i]));
        getchar();
        /*g->vexs[i] = getchar();
        while(g->vexs[i] == '\n')//吃回车
        {
            g->vexs[i] = getchar();
        }*/
    }
    #ifdef DEBUG
    for(i = 0; i < g->numVertexes; i++)
    {
        printf("%c ", g->vexs[i]);
    }
    printf("\n");
    #endif
    for(i = 0; i < g->numEdges; i++)
    {
        for(j = 0; j < g->numEdges; j++)
        {
            g->arc[i][j] = INFINITY; //邻接矩阵初始化
        }
    }
    //getchar();//注意吃回车
    for(k = 0; k < g->numEdges; k++)
    {
        char p, q;
        printf("please input i, j, w in Edge(vi, vj)\n");

        scanf("%c %c %d", &p, &q, &w);
        getchar();//吃回车
        int m = -1;
        int n = -1;
        m = Locates(g, p);
        n = Locates(g, q);
        if(n == -1 || m == -1)
        {
            printf("There is no vertex !\n");
            return ;
        }
        g->arc[m][n] = w;
        g->arc[n][m] = g->arc[m][n];  //因为是无向图,矩阵对称
    }
}

//打印图
void printGraph(Graph g)
{
    int i, j;
    printf("The Graph is under this sentence\n");
    for(i = 0; i < g.numVertexes; i++)
    {
        for(j = 0; j < g.numVertexes; j++)
        {
            printf("%5d  ", g.arc[i][j]);
        }
        printf("\n");
    }
}

//prime算法最小生成树
void MiniSpanTree_Prime(Graph g)
{
    int mins, i, j, k;
    int adjvex[MAXVEX];                 //保存相关顶点下标
    int lowcost[MAXVEX];                //保存相关顶点到邻接点(边)的权值,此权值是生成树里的点到该邻接点的最小权值
    lowcost[0] = 0;             //初始化第一个权值为0,即v0加入生成树
    adjvex[0] = 0;              //初始化第一个顶点下标为0
    for(i = 1; i < g.numVertexes; i++)
    {
        //循环除下标为0外的全部顶点
        lowcost[i] = g.arc[0][i];   //将v0顶点与之有边的权值存入数组
        adjvex[i] = 0;              //初始化都为v0下标
    }
    for(i = 1; i < g.numVertexes; i++)
    {
        mins = INFINITY;            //初始化最小权值为无穷大
        j = 1;
        k = 0;
        while(j < g.numVertexes)    //循环全部顶点
        {//如果权值不为0,且权值小于min
            if(lowcost[j] != 0 && lowcost[j] < mins)
            {
                mins = lowcost[j];  //则让mins成为最小权值
                k = j;              //记录当前最小权值的下标
            }
            j++;
        }
        printf("(%d,%d)", adjvex[k], k);//打印当前顶点边中权值最小边//如果要建树就在这里加代码
        lowcost[k] = 0;                 //将当前顶点的权值设置为0,表示此点为顶点且已经加入生成树

        for(j = 1; j < g.numVertexes; j++)
        {
            if(lowcost[j] != 0 && g.arc[k][j] < lowcost[j])//如果k顶点到j顶点的边的权值小于现在lowcost数组中其他已记录的其他的点到j顶点的最小权值,则更新他
            {
                lowcost[j] = g.arc[k][j];
                adjvex[j] = k;
            }

        }
    }
    printf("\n");
}


int main()
{
    Graph g;
    //邻接矩阵创建图
    CreatGraph(&g);
    //打印网图
    printGraph(g);
    //求最小生成树
    MiniSpanTree_Prime(g);

    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值