hello_gogogo
码龄9年
关注
提问 私信
  • 博客:34,322
    34,322
    总访问量
  • 17
    原创
  • 1,690,902
    排名
  • 16
    粉丝
  • 0
    铁粉

个人简介:日志过的很快,要留下点什么

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-11-19
博客简介:

hello_gogogo博客

查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得11次评论
  • 获得184次收藏
创作历程
  • 4篇
    2023年
  • 4篇
    2018年
  • 8篇
    2017年
  • 1篇
    2016年
成就勋章
TA的专栏
  • 机器学习
    8篇
  • C++
    1篇
  • python
    4篇
  • Python 网络爬虫
    2篇
  • 设计模式
    3篇
  • JAVA
  • 大数据
兴趣领域 设置
  • 数据结构与算法
    算法
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

设计模式—责任链模式

本文中的案例使用责任链解决校验逻辑多造成的 if else 语句过多问题,可能并不是一个好的主意。为避免发送者与多个请求处理者耦合在一起,将所有的请求处理者通过前一对象记住其下一个对象的引用而连城一条链。:使用责任链模式,将整体的校验流程和具体校验点逻辑实现分离,但是每增加一个校验点,就要新增一个实现类。3、当责任链过长,请求处理涉及多个处理对象,无法使用并发,系统性能受到影响。3、简化了处理对象的链接,避免过多的 if else 语句。:创建处理链,并向具体的处理对象提交请求。1、减低对象之间的耦合度。
原创
发布博客 2023.06.23 ·
753 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

设计模式—模板方法模式

定义一个基础的抽象类,包含抽象主键校验,和具体的系统来源字段校验,模板方法内调用两个校验。在具体的客户、地址、联系人类中实现具体的主键校验逻辑。3、这种设计模式在未学习前,提取了抽象类和一些公共逻辑放在具体方法中,但是没有考虑到再创建一个模板方法,将抽象方法和具体方法串联起来。定义一个操作的流程框架,而将流程中一些步骤延迟到子类中实现。2、父类中的抽象方法由子类实现,子类的结果影响父类的结果,提高代码的阅读难度。1、每个不同的实现都需要定义一个子类,会导致类的个数增加,使系统更庞大。
原创
发布博客 2023.06.15 ·
1012 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一、设计模式一些基本概念

学习设计模式的一些基本概念
原创
发布博客 2023.06.12 ·
206 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一、设计模式学前认识

设计模式是对软件设计中普遍存在(反复出现)的各种问题,所提出的解决方案[^1]: 维基百科1、提升代码的可读性、可扩展性、可重用性和可维护性。2、使程序设计更加标准化、工程化,提高交付效率3、程序员设计能力、编程能力、行业经验的体现。1、曾经断断续续学习过设计模式,但是实际工作代码开发中的CRUD。学习了不知道怎么用!2、见识了大牛和一些框架的代码,自认为开发水平还有很大的提升空间,借此记录学习过程1、坚持下去:完成23种设计模式的学习。2、针对每种设计模式有输出件:代码、UML图及个人理解。3、
原创
发布博客 2023.06.11 ·
105 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 网络爬虫(二、Beautiful Soup 库)

一、Beautiful Soup 库使用案例requests 库实现了对网页内容的爬取,但是,如何从繁杂的信息中提取正真有价值的数据? Beautiful Soup 是解析、遍历、维护“标签”树的功能库。 爬取中国最好大学排名2016 的数据:http://www.zuihaodaxue.cn/zuihaodaxuepaiming2016.html程序设计步骤: 1、获取大学排名网...
原创
发布博客 2018.05.19 ·
544 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Python 网络爬虫(一、requests 库)

一、requests 库实现自动网络请求,自动爬取 HTML 页面。简单例子:(注:所有例子均在python 3.6 运行 )import requests # 导入 requests 库url = "http://www.baidu.com"r = requests.get(url) # 获取页面...
原创
发布博客 2018.05.14 ·
334 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python 多线程编程实现

一、多线程简单例子#!user/bin/python#-*- coding:utf-8 -*-import threadingfrom time import ctime,sleepdef fib(x): # 斐波那契数 sleep(0.05) if x<2: return 1 return (fib(x-2)+fib(x-1))def fac(x):
原创
发布博客 2018.05.10 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python 中的网络编程实现

TCP 服务器端代码:#!/usr/bin/env# -*- coding:utf-8 -*-from socket import *from time import ctimeHOST = '' # 服务器中 HOST 变量是空白的(单引号之间没有空格!),这是对bind() 方法的标识,表示它可以使用任何可用的地址PORT = 21567BUFSIZE = 1
原创
发布博客 2018.05.04 ·
413 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

CART之回归树python代码实现

一、CART ( Classification And Regression Tree) 分类回归树 1、基尼指数:在分类问题中,假设有KKK 个类,样本点属于第kkk 类的概率为PkPkP_k ,则概率分布的基尼指数定义为: Gini(P)=∑k=1KPk(1−Pk)=1−∑k=1KP2kGini(P)=∑k=1KPk(1−Pk)=1−∑k=1KPk2Gini(P) = \sum\li...
原创
发布博客 2017.10.31 ·
6341 阅读 ·
3 点赞 ·
9 评论 ·
12 收藏

分类决策树简介及ID3算法实现

一、定义: 分类决策树模型是一种对实例进行分类的树形结构。决策树由结点(node) 和有向边(directed edge)组成。结点分为内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性;叶结点表示一个类。二、重要概念:1、熵 (Entropy):表示随机变量不确定性的度量。熵越大,随机变量的不确定性就越大。设: XX 是取有限值的离散随机变量,其概率
原创
发布博客 2017.10.17 ·
3660 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

python代码实现SVM

代码过程: 外循环1、进行第一次迭代,遍历所有的 α\alpha 值。 对每个α\alpha 判断是否违反KKTKKT 条件,是的话,当作第一个αi\alpha_i, 遍历所有样本点,求得|Ei−Ek|| E_i - E_k| 的最大值,该最大值既是寻找的第二个αi\alpha_i。2、从第二次迭代,遍历满足0<αi<C0<\alpha_i<C 的样本点。3、当不存在满足0<αi<C0<\alp
原创
发布博客 2017.10.06 ·
2423 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

SVM简介

一、支持向量机(SVM)定义:1、线性可分支持向量机:给定线性可分的训练数据集,通过(硬)间隔最大化或者等价的求解相应的凸二次规划问题学习得到的分离超平面为:w∗x+b=0w*x+b = 0 以及相应的分类决策函数: f(x)=sign(w∗x)+bf(x) = sign(w*x) + b 。2、线性支持向量机给定线性不可分的训练数据集,通过软件间隔最大化或者等价的求解相应的凸二次规划问题学习得到
原创
发布博客 2017.10.06 ·
11724 阅读 ·
11 点赞 ·
0 评论 ·
122 收藏

感知机简介及python代码简介

感知机(Perceptron)(Perceptron) 是二分类的线性分类模型;感知机学习旨在求出将训练数据进行线性划分的分离超平面。1、感知机模型:f(x)=sign(θ∗x+b)f(x) = sign(\theta*x+b), 其中, sign(z)={+1−1z >= 0z<0sign(z) = \begin{cases}+1& \text{z >= 0} \\-1& \text{
原创
发布博客 2017.10.03 ·
691 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

SoftMax回归简介及python代码实现

1、SoftMax回归概率分布模型:对于K分类,第 k 类的参数为θK\theta_K, 组成二维矩阵θk×(n+1)\theta_{k\times(n+1)},KK 是总共的类别数目,nn 是特征数目。 P(c=k|x;θ)=θTkx∑l=1Kexp(θTkx)P(c=k|x;\theta) = \frac{\theta_k^Tx}{\sum\limits_{l=1}^Kexp(\theta_k
原创
发布博客 2017.10.02 ·
2361 阅读 ·
1 点赞 ·
1 评论 ·
26 收藏

Logistic回归简介及python代码实现

1、Sigmoid 函数:hθ(x)=g(θTx)=11+e−θTxh_\theta(x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}}设 g(z)=11+exp(−z)g(z) = \frac{1}{1 + exp(-z)}g′(z)=(11+exp(−z))′=exp(−z)(1+exp(−z))2=11+exp(−z)∗(exp(−z)1+exp(−
原创
发布博客 2017.10.01 ·
1981 阅读 ·
0 点赞 ·
1 评论 ·
18 收藏

线性回归简介及python代码实现

线性回归的模型:h(x)=θ0+θ1∗x1+θ2∗x2h(x) = \theta_0 + \theta_1*x_1 + \theta_2*x_2, h(x)=∑ni=0θixi=θTXh(x) = \sum_{i=0}^n\theta_ix_i = \theta^TX , 这里x0=1x_0 = 1。代价函数为:J(θ)=12(y−h(x))2J(\theta) = \frac{1}{2} (y
原创
发布博客 2017.09.30 ·
1350 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

C++学习笔记一

一. VS 的输出数据保存到文本文件中:#include//要包含的头文件using namespace std;int main(){ofstream ocout;// 建立ofstream 对象ocout.open("test.txt");// 打开文件ocout "hello,C++";//写入数据ocout.close();// 关闭
原创
发布博客 2016.03.21 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多