检测数据分布的变化 TRACKING THE RISK OF A DEPLOYED MODEL AND DETECTING HARMFUL DISTRIBUTION SHIFTS

本文探讨了ICLR 2022论文,关于监控已部署模型的风险和识别有害数据分布变化。研究区分了无害和有害数据漂移,并提出顺序假设检验和顺序估计算法来持续监测数据漂移,保证较低的误报率。方法包括估计模型在源和目标数据上的风险,使用Confidence Bounds和Time-uniform Lower Confidence Bound。这允许设定绝对阈值来触发警告,如准确率低于80%。
摘要由CSDN通过智能技术生成

论文首页
本文介绍一篇ICLR 2022的论文《TRACKING THE RISK OF A DEPLOYED MODEL AND DETECTING HARMFUL DISTRIBUTION SHIFTS》,题目直译为《追踪已部署模型的风险并检测有害的分布变化》。顾名思义,该研究认为数据流的分布是不断变化的,这些变化可能会导致已经部署的模型不再适应,使得模型准度(or 性能)下降。

此研究与先前工作最大的不同点在于:

  • 该研究将 Data Drift 归类为无害(benign)变化和有害(harmful)变化两类,对于无害变化可以不修改/替换模型;
  • 先前研究一般假设 Data Drift 只发生在 Input Covariate 或 Label 其中一个上,限制了应用场景;
  • 其可以持续的监控 Data Drift,并保证较低的 False Positive Rate;

试了以下New Bing对于这篇论文的总结:
New Bing对于这篇论文的总结

一些定义

Notations 解释
X , Y {X}, {Y} X,Y 输入与输出;Covariate and Label Spaces
f : X → Y f: {X} \rightarrow {Y} f:XY 预测模型;Predictor
l ( ⋅ , ⋅ ) l(\cdot,\cdot) l(,) 损失函数;Loss Function
R ( f ) : = E [ l ( f ( X ) , Y ) ] R(f):= \mathbb{E}[l(f({X}),{Y})] R(f):=E[l(f(X),Y)] 期望损失; corresponding expected loss (a.k.a., risk of f f f)

此文仅仅假设了损失函数是有边界的,没有其他任何附加的假设条件。

方法

此文首先将数据变化预测问题定义成了顺序假设检验,随后提出了顺序估计算法。

顺序假设检验 SEQUENTIAL HYPOTHESIS TEST

如果模型的风险在当前数据上(Target)比在之前数据上(Source)大出一定程度,该程度不可接受,则判定为有害变化,否则为无害变化。

当前/未来数据可能满足
(a). 独立同分布(i.i.d.):分布突然变化,但是仍然i.i.d.;很简单且不实际,这里不讨论
(b). 独立(independence):分布也可以缓慢变化;以下仅讨论 (b) 情况。

假设 Hypotheses 可以形式化地表示为:
H 0 : R T ( t ) ( f ) ≤ R S ( f ) + ϵ tol , ∀ t ≥ 1 H_0: R_T^{(t)}(f) \leq R_S(f) + \epsilon_\text{tol}, \forall t\geq 1 H0:RT(t)(f)RS(f)+ϵtol,t1 vs. H 1 : ∃ t ∗ : R T ( t ∗ ) ( f ) > R S ( f ) + ϵ tol H_1: \exists t^*: R_T^{(t^*)}(f) > R_S(f) + \epsilon_\text{tol} H1:t:RT(t)(f)>RS(f)+ϵtol
其中, ϵ tol \epsilon_\text{tol} ϵtol 为可接受的忍耐程度; R T ( t )

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值