动态规划算法
同分治算法一样,将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
动态规划与分治算法:
都涉及到递归问题,不同之处在于动态规划考虑到运算时的重复性
步骤:
- 定义一个状态,这是一个最优解的结构特征
- 进行状态的递推,得到递推公式
- 进行初始化
- 返回结果
使用条件:
有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)
例:
斐波那契:
def fib(int n):
if (n<=0):
return 0
elif(n==1 or n==2):
return 1
else:
return fib(n-1)+fib(n-2)
时间复杂度为2^n
因为每次都重复计算fib(3),fib(4)
先定义一个空间存放计算过的值:
def fib(int n):
f[n+1]=0
f[0] = 0
f[1] = 1
f[2] = 1
if n<=0:
return f[0]
elif n==1:
return f[1]
else:
for i in range(3,n+1):
fib[i] = fib[i-1]+fib[i-2]
return f[n]
优化:
def fib(int n):
if n<=0:
return
elif n ==1 or n==2:
return 1
f1 = 0
f2 = 1
result = 0
for i in range(2,n+1):
result = f1+f2
f1 = f2
f2 = result
return result
解析:
f3 = f2+f1
f4 = f3+f2
自底向上
保存上次运算值
小结:动态规划主要是解决递归问题中的时空复杂度的优化问题
因此,根本还是在于求解通解或者说递归表达式
空间有两种:
自顶向下:先规定所有值为一个向量,调用向量值,靠近0,1,2,计算即可
自底向上:采用一个中间参数result,赋值递进往上推,靠近值
题:
买卖股票
买卖股票的最佳时机,即求买卖股票的最大利润,至多只能交易一次
解题思路:动态规划法
前i天的最大利润 = max(前i-1天的最大利润,第i天的价格-前i天的最低价格)
class Solution:
def maxProft(self,prices):
if len(prices)==0:
return 0
else:
p = 0
pmin = float('inf')
for i in prices:
p =max(p,i-pmin)
pmin = min(i,pmin)
return p
打家劫舍
打劫一条街上的人家,相邻人家不能打劫,否则触动报警,求最多金额
class Solution:
def rob(self, nums: List[int]) -> int:
if nums ==[]:
return 0
elif len(nums)==1:
return nums[0]
else:
l = [0 for x in range(len(nums))]
l[0] = nums[0]
l[1] = max(nums[0],nums[1])
for i in range(2,len(nums)):
l[i] = max(l[i-2]+nums[i],l[i-1])
return l[len(nums)-1]
爬楼梯最小代价问题
第i个阶梯对应着一个非负数的体力花费,cost[i]
每次爬1或2个台阶
起始位置为索引0或1
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
l = len(cost)
if l ==0:
return 0
elif l==1:
return cost[0]
else:
a = [0 for x in range(l+1)]
a[0] ==0
a[1] ==0
for i in range(2,l+1):
a[i] = min(a[i-1]+cost[i-1],a[i-2]+cost[i-2])
return a[l]
这题唯一拗口的地方在于给出台阶,但目标是登顶,即最后的结果是爬第i个台阶上去还是第i-1个台阶上去
还有思路没问题,提交十次都出错原因在于头脑短路,循环时从(0,l+1)而a[0]和a[1]已赋值,需要注意这些小问题,小问题最愁人
除数博弈
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:选出任一 x,满足 0 < x < N 且 N % x == 0 。用 N - x 替换黑板上的数字 N 。如果玩家无法执行这些操作,就会输掉游戏。
class Solution:
def divisorGame(self, N: int) -> bool:
f = [0 for i in range(N+1)]
if N ==1:
return False
else:
f[1] = 0
f[2] = 1
for i in range(3,N+1):
for j in range(1,int(i**0.5)):
if i%j==0 and f[i-j]==0:
f[i]=1
break
if f[N]==0:
return False
else:
return True