当前搜索:

180417 马克飞象使用帮助

Page-1 Page-2 Page-3 Page-4
阅读(7) 评论(0)

180415 机器学习与深度学习课程资源汇总 (不断收集更新中ing~)

【2016-机器学习】 Coursera https://www.coursera.org/learn/machine-learning 网易云 http://study.163.com/course/introduction/1004570029.htm 【2017-深度学习计算机视觉...
阅读(15) 评论(0)

180415 Jupyter中并排插入两张图片

<table> <td> <img src="images/attn_model.png" style="width:500;hei...
阅读(16) 评论(0)

180414 在Jupyter Noebook中播放mp3

import IPython IPython.display.Audio('music.mp3')
阅读(7) 评论(0)

180414 python指定概率随机取值

https://www.coursera.org/specializations/deep-learning python指定概率随机取值参考如下: 下面是利用 np.random.choice()指定概率取样的例子: np.random.seed(0) p = np.array([0.1,...
阅读(13) 评论(0)

180413 绘制tensorflow自带激活函数tf.nn.sigmoid()与tf.nn.relu()

import tensorflow as tf import matplotlib.pyplot as plt x = tf.placeholder(tf.float32) y1 = tf.nn.sigmoid(x) y2 = tf.nn.relu(x) data = np.linspac...
阅读(8) 评论(0)

180412 tensorflow自定义反向传播中的梯度值g.gradient_override_map()

Tensorflow’s gradient_override_map function Tensorflow: How to replace or modify gradient? tensorflow学习笔记(三十):tf.gradients 与 tf.stop_gradient() 与 高...
阅读(26) 评论(0)

180412 tf.identity,tf.assign_add(),with tf.control_dependencies()与tf.negative()

英文解释以及应用 中文解释以及应用 tf.identity是返回了一个一模一样新的tensor,再control_dependencies的作用块下,需要增加一个新节点到gragh中。 x = tf.Variable(0.0) x_plus_1 = tf.assign_add(x, ...
阅读(11) 评论(0)

180412 python中的__init__,__call__,__del__使用方法

参考文献1-Python中的init()和call()函数 参考文献2-python特殊函数 call() _init_: 构造函数,成员初始化函数,初始化类实例成员变量 _call_: 内置成员函数,通过类名+括号调用,如class_name(a,b) _del_: 析构函数,实例化对象...
阅读(19) 评论(0)

180412 tf.cond()与tf.reduce_mean()的使用方法

tf.cond()的用法 代码 import tensorflow as tf x=tf.constant(4) y=tf.constant(5) z = tf.multiply(2, 3) result = tf.cond(x &...
阅读(8) 评论(0)

180412 python内置表达式lambda+map+filter+reduce的用法

注意区别lambda定义函数与使用lambda函数计算返回值是两个过程: 代码 data = np.arange(5) print(data) f = lambda x:x+1 print(f) # b是一个函数 print(f(data)) # f(data)才是对应的函...
阅读(7) 评论(0)

180412 利用tf.reset_default_graph()重置default graph计算图以及nodes节点

问题描述:如何清除每次运行时,tensorflow中不断增加的节点并重置整个defualt graph? import tensorflow as tf # tf.reset_default_graph() with tf.variable_scope('Space_a'): ...
阅读(37) 评论(0)

180412 tf.placehoder()调用任意尺寸的数据以及tf.cast()的使用方法

① tf.placeholder() 极客学院-数据读取 代码 import tensorflow as tf a = tf.placeholder(tf.float32) # 不指定tf.placeholder(tf.float32,shape)中的shape v1 = [11.,12...
阅读(12) 评论(0)

180411 tf.slice() 用法举例

tf.slice一句话概括就是:从指定的数据起始位置(begin)切片(size)尺寸的数据。tensorflow官方定义如下: This operation extracts a slice of size size from a tensor input starting at the...
阅读(6) 评论(0)

180411 利用python自定义batch-generator批量数据生成器

简单思路演示代码 简单代码演示,基本思路(实际中需要像后面代码一样先洗牌,且每次shuffer后顺序不同) a = np.arange(100) def batch_gen(data): # 定义batch数据生成器 idx = 0 while True: ...
阅读(43) 评论(0)

180411 利用python类定义深度学习模型

类的好处不用多说:一次定义,多次使用。 类初始化def __init__中声明模型初始化函数 类初始化def __init__后定义模型初始化函数 以下是python类定义模型的一个例子: 定义深度学习模型类 batch_size = 64 class MNISTModel(obje...
阅读(6) 评论(0)

180411 python类初始化属性调用与非初始化属性调用

python类初始化属性在def __init__()中定义,实例化对象后可直接调用 python类非初始化属性在def func()中定义,实例化对象后,先调用调用函数,再调用属性 代码 class Mdata(object): def __init__(self): ...
阅读(5) 评论(0)

180407 吴恩达深度学习系列课程资料汇总

视频 Coursera-官方课程视频 网易云课堂-中文汉化视频 资料 前三课-302页吴恩达Deeplearning.ai课程笔记,详记基础知识与作业代码 前三课-课程笔记v429 第四课-在等吴恩达深度学习第5课的时候,你可以先看看第4课的笔记 第五课-吴恩达深度学习系列课程完结,...
阅读(29) 评论(0)

180405 单层卷积网络的参数计算

网易云课堂 网易云课堂资源 卷积网络总结 卷积网络举例 卷积神经网络例子(模型参数的选择可参考别人类似问题的参数设置) 卷积神经网络参数规律 池化总结 相同数据的输入输出,卷积网络相比全连接网络可大幅度减少模型参数 卷积网络效果好的三个原因 网络图片,如侵权,请...
阅读(18) 评论(0)

180331 如何修改pdf背景颜色

1 用Adobe Acrobat 打开文件 2 点击工具-背景 3 从颜色:设置需要的背景颜色 4 位置:指定更改颜色的范围(可参考如何所示)
阅读(14) 评论(0)
    个人资料
    持之以恒
    等级:
    访问量: 11万+
    积分: 2683
    排名: 1万+
    最新评论