- 导入工具箱
from pytorch_lightning.loggers import TensorBoardLogger
- 写入记录
def training_step(self, batch, batch_idx):
self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
- 创建记录器logger
logger = TensorBoardLogger('tb_logs', name='my_model')
- 关联训练器trainer
# train
model = LightningMNISTClassifier(outdim=outdim)
trainer = pl.Trainer(gpus=None, max_epochs=2, logger=logger)
trainer.fit(model)
- 打开
tensorboard
tensorboard --logdir ./tb_logs
⚠️:tensorboard命令中路径名称
需要与创建logger文件夹路径名称
相同
- 参考文献:
https://pytorch-lightning.readthedocs.io/en/latest/logging.html#logging-hyperparameters
https://www.learnopencv.com/tensorboard-with-pytorch-lightning/
- Demo
# PyTorch Lightning 1.x + Neptune [Basic Example]
# Before you start
# Install dependencies
# Step 1: Import Libraries
from pytorch_lightning.loggers.neptune import NeptuneLogger
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
# Step 2: Define Hyper-Parameters
PARAMS = {'max_epochs': 3,
'learning_rate': 0.005,
'batch_size': 256}
# Step 3: Define LightningModule and DataLoader
# pl.LightningModule
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log('train_loss', loss)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=PARAMS['learning_rate'])
# DataLoader
train_loader = DataLoader(MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()),
batch_size=PARAMS['batch_size'])
# Step 4: Create TensorBoardLogger
logger = TensorBoardLogger('tb_logs', name='my_model')
# Step 5: Pass NeptuneLogger to the Trainer
trainer = pl.Trainer(max_epochs=PARAMS['max_epochs'],
logger=logger)
# Step 6: Run experiment
model = LitModel()
trainer.fit(model, train_loader)
# Explore Results