Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC".
Note:
If there is no such window in S that covers all characters in T, return the empty string
"".
If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
算法思想:通过建立hash表unordered_map来记录扫描过的元素,并且记录其重复个数。因为S只能遍历一遍,所以还需要两个指针去限制最终包含区域的范围,即first与behind。且还需要一个count去记录每次循环过程中是否达到了包含字符串T的条件。具体代码如下:
string minWindow(string S, string T) {
string result;
if (S.empty() || T.empty())
return result;
unordered_map<char, int> m1; //建立<char,int>类型的hash表,方便记录重复元素
unordered_map<char, int> m2;
for (int i = 0; i < T.length(); i++)
m1[T[i]]++; //记录target中每个元素的个数
int first = 0, behind = 0;//用两个指针去维护字符串S
int count=0;//监控器
int minlength = INT_MAX;
for (; first < S.length(); first++) {
if (m1.find(S[first]) != m1.end()) {
m2[S[first]]++;
if (m2[S[first]] <= m1[S[first]]) // 元素重复不能比待匹配串多
count++;
}
if (count >= T.length()) {
while (m1.find(S[behind]) == m1.end() || m2[S[behind]]>m1[S[behind]]) { //当出现查找不到或者m2的某元素已经多余m1的这个元素时
m2[behind]--;
behind++; //向后移一位
}
if (first - behind + 1 < minlength) { //遇到更短的区间时更新
minlength = first - behind + 1;
result = S.substr(behind, minlength);
}
}
}
return result;
}
本文介绍了一种在字符串S中寻找包含字符串T所有字符的最小子串的高效算法,复杂度为O(n)。该算法利用哈希表记录已扫描元素及其重复次数,并通过双指针维护可能的覆盖区间。
506

被折叠的 条评论
为什么被折叠?



