Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle.
Note that the row index starts from 0.
In Pascal's triangle, each number is the sum of the two numbers directly above it.
Example:
Input: 3 Output: [1,3,3,1]
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> vi(rowIndex + 1);
vi[0] = 1;
for (int i = 0; i <= rowIndex ; ++i)
{
for (int j = i; j > 0; --j)
{
vi[j] = vi[j] + vi[j-1];
}
}
return vi;
}
};
杨辉三角的第二题,由于只能让空间复杂度保持在k,因此想到最多只能开返回值结果的那一行为最大空间,并且只能在此空间上进行操作。但是杨辉三角又必须借助上一层的value去更新下一层,因此显然要得出前面所有的value并且都在这个空间上。所以必须在内层循环用从右到左更新value,以此防止上一层还要用的value被破坏掉。