拼手气红包算法_二倍均值法

使用二倍均值法进行的拼手气红包算法

假设M为总金额,N为抢红包人数,那么根据二倍均值法,每次抢到的金额 = 随机区间 (0, M / N X 2)

这个公式可以确保每个人获取的金额的平均值是相等的,不会受到先后顺序不同的影响。

比如说,有一个金额为100块的红包,10人分,那么:

100/10X2 = 20, 所以第一个人的随机范围是(0,20 ),平均可以抢到10元。

假设第一个人随机到10元,那么剩余金额是100-10 = 90 元。

90/9X2 = 20, 所以第二个人的随机范围同样是(0,20 ),平均可以抢到10元。

假设第二个人随机到10元,那么剩余金额是90-10 = 80 元。

80/8X2 = 20, 所以第三个人的随机范围同样是(0,20 ),平均可以抢到10元。

以此类推,每一次随机范围的均值是相等的。

#!/usr/bin/python
#-*- coding utf-8 -*-

__author__ = 'Luo Chenyi'
__data__ = '2020-12-17'
__vertion__ = 'v1.00.00'

import random

MANUAL_SET = False
if MANUAL_SET == True:
    total_momey = input("Please input the amount of money:")
    total_num = input("How many people:")
    total_times = input("How many cycles:")
else:
    total_momey = 1000
    total_num = 10
    total_times = 1000

#输出每次的抢红包结果
DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING = False


#输入:
#   momey:总金额
#   num:总人数
#   times:总次数
#返回:
#   无
def red_packet(money, num, times=1):
    if money == 0:
        raise AttributeError('The amount should greater than 0.')
    elif num == 0:
        raise AttributeError('The num can not be zero.')

    #参数初始化和定义
    round = num                                 #剩余人数
    current_money = money * 100                 #当前剩余的钱,初始值为money,乘100倍表示精确到分
    avg = (current_money * times) / num         #平均值每人抢times的总金额 = 总金额 * times / 人数
    circle_times = 0                            #循环进行的次数
    variance = 0                                #方差,方差 = (每个人抢times次的总金额-平均值每人抢times的总金额)的平方和/总人数

    L = []  #定义一个空表,用来记录每个人抢到的红包金额
    for i in range(0, num):
        L.append(0)

    while  circle_times < times:
        circle_times += 1
        #赋值,准备抢红包
        round = num                     #剩余人数
        current_money = money * 100     #当前剩余的钱,初始值为money,乘100倍表示精确到分

        if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
            #输出本次抢红包结果
            print('********************************************')
            print('Number of red packets snatched: %d' %circle_times)

        #计算前(num-1)个红包金额
        for i in range(1, num):
            get_money = random.randint(1, int((2 * current_money // round) - 1))
            L[i - 1] += get_money
            current_money -= get_money
            round -= 1
            if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
                print('    id[%d] get %.02f rest %.02f' %(i, (float)(get_money / 100), (float)(current_money / 100)))

        #最后一个红包获得剩下的全部
        current_money, get_money = 0, current_money
        L[num - 1] += get_money
        if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
            print('    id[%d] get %.02f rest %.02f' %(num, (float)(get_money / 100), (float)(current_money / 100)))
            print('********************************************')
            print('\n')

    #输出多次抢红包的最终结果
    if True:
        current_money = 0
        variance = 0
        print('********************************************')
        print(' Total money is %d, for %d people, circle %d times' %(money, num, times))
        print(' Average value is %.02f' %(float)(avg / 100))
        for i in range(1, num + 1):
            current_money += L[i - 1]
            variance += abs(L[i - 1] - avg) * abs(L[i - 1] - avg)
            print('    id[%d] totally get %.02f average each time %.02f' %(i, (float)(L[i - 1] / 100), (float)(L[i - 1] / 100 / times)))
        print(' The variance : %.2f' %(variance / num / 10000))
        print(' Amount received : %.2f' %(current_money / 100))
        print('********************************************')

if __name__ == '__main__':
    red_packet(total_momey, total_num, total_times)

下图是输出的结果,1000元的红包,10人抢,共发1000次,方差公式为
方差 = (每个人抢times次的总金额-平均值每人抢times的总金额)的平方和/总人数
方差有点吓人啊。。。。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
还是需要用线段切割法试试,二倍均值法是平均分配,与算法不符。

<think>嗯,用户想了解红包小游戏的金额分配或计算的原理,特别是随机分割的实现方法。首先,我需要回忆一下常见的红包算法,比如微信的手气红包是怎么做的。根据之前的引用,微信红包算法可能涉及随机数生成,并且有一定的上下限限制,比如每个红包的最小金额是0.01元,最大值是剩余平均值的一定倍数,比如两倍。 用户的问题集中在原理和实现上,所以需要分步骤解释。首先,可能需要介绍基本思路,比如总金额固定,然后逐个生成随机金额,同时确保每次分配后剩余金额足够分给剩下的用户。接着,可以提到如何设置动态范围,比如每次的随机范围是0.01到剩余平均值乘以2,这样避免后面红包金额过小。此外,还需要考虑算法的优化,比如处理最后几个红包时的边界情况,确保每个人至少能分到0.01元。 根据引用中的内容,比如引用[4]提到微信的算法是在0.01和剩余平均值*2之间随机分配,而引用[5]提到普通法的缺点可能导致前面的人抢得太多,后面的人太少。所以需要对比不同算法的优缺点,比如普通法、二倍均值法、线段切割法、偏移修正法等。其中二倍均值法可能更公平,避免极端情况。 另外,用户可能想知道这些算法如何保证随机性又避免金额差异过大。比如使用二倍均值法,每次的随机上限是剩余平均值的两倍,这样后面的红包仍有较大的可能金额,而不会像普通法那样递减太快。同时,处理最后一个红包时需要特殊处理,确保总金额正确,可能剩余的钱都分配给最后一个红包,或者调整最后一个的金额。 还需要考虑代码实现的示例,比如用Python或Java展示算法步骤。比如引用[4]中的例子,当总金额为100,分10个红包时,第一个红包的范围是0.01到20元,第二个红包在剩下的金额中继续按同样的规则分配,直到最后一个。但要注意,当剩余的红包数只剩一个时,直接分配剩余金额,避免出现负数或不符合条件的情况。 可能还需要提到正态分布的应用,如引用[3]中提到的,虽然有些算法可能不直接使用正态分布,但结果可能符合类似中间多、两边少的分布。不过微信的算法更偏向于均匀分布,但通过动态调整范围,使得金额分布相对均匀,避免极端值过多。 最后,用户可能需要相关的问题,比如算法的优化方法、不同场景下的应用、如何避免金额差异过大等。所以需要准备几个相关问题,帮助用户进一步理解。</think>### 红包金额分配算法原理 红包金额分配的核心是通过随机算法在固定总金额下生成若干份金额,同时满足以下条件: 1. **总金额固定**:所有红包金额之和等于预设值 2. **最小单位限制**:单个红包金额不低于0.01元(1分钱) 3. **随机性保证**:各红包金额分布相对均衡,避免极端差距 #### 一、基础算法二倍均值法(微信手气算法) 这是最常用的方法,核心规则为:**每次分配时,随机金额上限为剩余金额均值的两倍**。具体步骤如下: 1. 初始化剩余金额$M$和剩余红包数$N$ 2. 生成第$i$个红包金额:$A_i = \text{random}(0.01, \frac{M}{N} \times 2)$ 3. 更新剩余金额:$M = M - A_i$ 4. 重复步骤2-3直至最后一个红包直接取剩余金额 例如:100元分10个红包时: - 第1个红包范围:$0.01 \leq A_1 \leq 20$(因$100/10 \times 2=20$) - 第2个红包范围:基于剩余金额$100-A_1$和剩余数量9重新计算上限 - 最后一个红包直接取剩余金额[^4] $$A_i = \text{random}\left(0.01,\ \frac{M_{\text{remaining}}}{N_{\text{remaining}}} \times 2\right)$$ #### 二、线段切割法(预分配法) 1. 将总金额$M$视为长度为$M$的线段 2. 随机选取$N-1$个分割点将线段分成$N$段 3. 每段长度即为红包金额 这种方法能保证金额分布更接近正态分布[^3] #### 三、优化算法:偏移修正法 针对基础算法的改进: 1. 设置非对称上下限(如下限0.01,上限动态调整) 2. 引入修正因子避免尾部金额过小 3. 对最后两个红包特殊处理: - 倒数第2个红包生成后,检查最后一个红包是否满足$A_N \geq 0.01$ - 若不满足,则调整前序金额[^1] ```python def generate_redpacket(total, num): result = [] remain = total for i in range(num-1, 0, -1): avg = remain / (i+1) money = random.uniform(0.01, avg*2) money = round(money, 2) result.append(money) remain -= money result.append(round(remain, 2)) # 最后一个红包 random.shuffle(result) return result ``` #### 四、关键特性对比 | 算法类型 | 优点 | 缺点 | |----------------|---------------------------|--------------------------| | 二倍均值法 | 实现简单,时间复杂度低 | 尾部红包可能偏小 | | 线段切割法 | 分布更接近正态分布[^3] | 需要预先生成分割点 | | 偏移修正法 | 避免极端小额红包[^1] | 算法复杂度较高 | #### 五、应用场景 - **社交红包**:微信/支付宝等平台常用二倍均值法 - **游戏奖励分配**:线段切割法适合需要正态分布的奖励池 - **金融领域**:偏移修正法用于需要严格金额控制的场景[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值