使用二倍均值法进行的拼手气红包算法
假设M为总金额,N为抢红包人数,那么根据二倍均值法,每次抢到的金额 = 随机区间 (0, M / N X 2)
这个公式可以确保每个人获取的金额的平均值是相等的,不会受到先后顺序不同的影响。
比如说,有一个金额为100块的红包,10人分,那么:
100/10X2 = 20, 所以第一个人的随机范围是(0,20 ),平均可以抢到10元。
假设第一个人随机到10元,那么剩余金额是100-10 = 90 元。
90/9X2 = 20, 所以第二个人的随机范围同样是(0,20 ),平均可以抢到10元。
假设第二个人随机到10元,那么剩余金额是90-10 = 80 元。
80/8X2 = 20, 所以第三个人的随机范围同样是(0,20 ),平均可以抢到10元。
以此类推,每一次随机范围的均值是相等的。
#!/usr/bin/python
#-*- coding utf-8 -*-
__author__ = 'Luo Chenyi'
__data__ = '2020-12-17'
__vertion__ = 'v1.00.00'
import random
MANUAL_SET = False
if MANUAL_SET == True:
total_momey = input("Please input the amount of money:")
total_num = input("How many people:")
total_times = input("How many cycles:")
else:
total_momey = 1000
total_num = 10
total_times = 1000
#输出每次的抢红包结果
DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING = False
#输入:
# momey:总金额
# num:总人数
# times:总次数
#返回:
# 无
def red_packet(money, num, times=1):
if money == 0:
raise AttributeError('The amount should greater than 0.')
elif num == 0:
raise AttributeError('The num can not be zero.')
#参数初始化和定义
round = num #剩余人数
current_money = money * 100 #当前剩余的钱,初始值为money,乘100倍表示精确到分
avg = (current_money * times) / num #平均值每人抢times的总金额 = 总金额 * times / 人数
circle_times = 0 #循环进行的次数
variance = 0 #方差,方差 = (每个人抢times次的总金额-平均值每人抢times的总金额)的平方和/总人数
L = [] #定义一个空表,用来记录每个人抢到的红包金额
for i in range(0, num):
L.append(0)
while circle_times < times:
circle_times += 1
#赋值,准备抢红包
round = num #剩余人数
current_money = money * 100 #当前剩余的钱,初始值为money,乘100倍表示精确到分
if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
#输出本次抢红包结果
print('********************************************')
print('Number of red packets snatched: %d' %circle_times)
#计算前(num-1)个红包金额
for i in range(1, num):
get_money = random.randint(1, int((2 * current_money // round) - 1))
L[i - 1] += get_money
current_money -= get_money
round -= 1
if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
print(' id[%d] get %.02f rest %.02f' %(i, (float)(get_money / 100), (float)(current_money / 100)))
#最后一个红包获得剩下的全部
current_money, get_money = 0, current_money
L[num - 1] += get_money
if DEBUG_INF_FOR_EACH_RED_PACKET_SNATCHING == True:
print(' id[%d] get %.02f rest %.02f' %(num, (float)(get_money / 100), (float)(current_money / 100)))
print('********************************************')
print('\n')
#输出多次抢红包的最终结果
if True:
current_money = 0
variance = 0
print('********************************************')
print(' Total money is %d, for %d people, circle %d times' %(money, num, times))
print(' Average value is %.02f' %(float)(avg / 100))
for i in range(1, num + 1):
current_money += L[i - 1]
variance += abs(L[i - 1] - avg) * abs(L[i - 1] - avg)
print(' id[%d] totally get %.02f average each time %.02f' %(i, (float)(L[i - 1] / 100), (float)(L[i - 1] / 100 / times)))
print(' The variance : %.2f' %(variance / num / 10000))
print(' Amount received : %.2f' %(current_money / 100))
print('********************************************')
if __name__ == '__main__':
red_packet(total_momey, total_num, total_times)
下图是输出的结果,1000元的红包,10人抢,共发1000次,方差公式为
方差 = (每个人抢times次的总金额-平均值每人抢times的总金额)的平方和/总人数
方差有点吓人啊。。。。
还是需要用线段切割法试试,二倍均值法是平均分配,与算法不符。