当前搜索:

Ubuntu16 压缩解压文件命令

ZIP zip是比较常用的文档压缩格式,最大的有点是跨平台,缺点是支持的压缩率不是很高。 压缩zip -r studio.zip directory_to_compress解压unzip studio.zipTAR 好处是只消耗非常少的CPU及时间打包,只是一个打包工具,并不负责压缩。tar -c...
阅读(0) 评论(0)

在ubuntu下想编辑某文档内容,但是没有权限,无法保存。

终端输入:sudo vim 文件名然后按“i”键进入编辑模式编辑结束后按“esc”,然后按“shift”+":",然后在下方输入“wq”,按回车即可保存退出
阅读(0) 评论(0)

Linux下的命令vim ~/.bashrc 啥意思,su root和sudo打开后的内容不一样呢

这个是用户的shell环境变量的配置文件因为你前面是波浪线,所以代表的是每个用户自己的配置环境,所以会有不同这个只针对bash环境下使用,对csh没有效果...
阅读(1) 评论(0)

vi 和vim 的区别

vi 和vim 的区别它们都是多模式编辑器,不同的是vim 是vi的升级版本,它不仅兼容vi的所有指令,而且还有一些新的特性在里面。vim的这些优势主要体现在以下几个方面:1、多级撤消我们知道在vi里,按 u只能撤消上次命令,而在vim里可以无限制的撤消。2、易用性vi只能运行于unix中,而vi...
阅读(1) 评论(0)

No module named _caffe 和No module named caffe错误解决

1,在代码中进行 import caffe 后报错ImportError:No module named _caffe     因为我显卡之前出错了,重现编译了caffe ,后面导致如上问题,解决方法如下:    cd caffe  #进入caffe目录,可能你的是cd caffe-master ...
阅读(1) 评论(0)

错误 (make: Nothing to be done for 'pycaffe'.)

$ sudo make clean之后运行$ sudo make pycaffe
阅读(1) 评论(0)

《深度学习——实战caffe》——caffe Model Zoo

下载meta数据到当前目录:cd data/ilsvrc12/ ./get_ilsvrc_aux.sh下载caffenet模型:cd ../../models/bvlc_reference_caffenet/ wget http://dl.caffe.berkeleyvision.org/bvlc...
阅读(1) 评论(0)

《深度学习——实战caffe》——caffe模型

一个完整的深度学习系统最核心的两个方面是数据和模型。   深度学习模型通常由三部分参数组成:可学习参数(Learnable Parameter),又称可训练参数、神经网络权系数、权重,其数值由模型初始化参数、误差反向传播过程控制,一般不可人工干预。结构参数(Archetecture Paramet...
阅读(28) 评论(0)

欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:Markdown和扩展Markdown简洁的语法代码块高亮图片链接和图片上传LaTex数学公式UML序列图和流程图离线写博客导入导出Markdown文件丰富的快捷键快捷键加...
阅读(1) 评论(0)

《深度学习——实战caffe》——caffe数据结构

caffe中一个CNN模型由Net表示,Net由多个Layer堆叠而成。caffe的万丈高楼(Net)是由图纸(prototxt),用blob这些砖块筑成一层层(Layer),最后通过SGD方法(Solver)进行简装修(train)、精装修(finetune)实现的。<sp...
阅读(14) 评论(0)

Ubuntu系统拼音无法正确打字怎么解决?

 Ubuntu系统中使用拼音输入法无法正确打字,输入法上显示出来的字和你想打的字并不相关,你无法打出你想要输入的汉字,这种现象比较常出现在升级Ubuntu系统后。我们该怎么解决这个问题呢?  方法如下:  1、在桌面 按“Ctrl”+“Alt”+“T”,打开系统终端:  2、在终端里面输入ibus...
阅读(8) 评论(0)

卷积和相关

在执行线性空间滤波时,经常会遇到两个概念相关和卷积二者基本相似,在进行图像匹配是一个非常重要的方法。相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理卷积的机理相似,但滤波器首先要旋转180度相关的计算步骤:(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方(2)将输入图像的像素...
阅读(9) 评论(0)

《深度学习——实战caffe》——利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字

1、利用模型lenet_iter_10000.caffemodel测试单张手写体数字所需要的文件:(1)待测试图片(自己画的也行,网络上下的也行);需要注意的是,不管是什么格式,都要转换为28*28大小的黑白灰度图像,具体转化方法请自行百度,不想转化的我这里提供给大家一组我转化好的图片资源供大家下...
阅读(7) 评论(0)

Ubnutu新手命令

如何寻求帮助?在 Linux 下遇到问题,最重要的是要自己寻求帮助,下面是三种寻求帮助的方法。manman 是 Linux 的系统手册,即 manual 。因为大多数程序都会自带手册,所以可以通过 man 命令获取帮助。执行以后,在 man page 页面中按 q 退出。获取 ls 的帮助1$ m...
阅读(1) 评论(0)

CNN学习笔记

1. 激活函数用来限制神经元输出振幅。由于通过激活函数将输出信号压制(限制)到允许范围之内的一定值,故而激活函数也被称之为压制函数。为什么引入非线性激励函数?如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层...
阅读(108) 评论(0)

《深度学习——实战caffe》——运行手写体数字识别

数据集背景:MNIST 是一个大型的手写体数字数据库,广泛应用于机器学习领域的训练和测试,由纽约大学Yann LeCun教授整理。MNIST包括60000个训练集和10000测试集,图片固定尺寸为28*28。LeNet模型背景:LeNet是1986提出的,是最简单的CNN(卷积神经网路)模型,也是...
阅读(12) 评论(0)

《深度学习——实战caffe》——环境搭建

前言:完全小白,一步步摸索,限于硬件条件(没有Nvidia显卡),本笔记只搭建CPU模式操作系统:Ubuntu 16.04编程接口:Python 2.7第一部分:安装依赖包12345678910111213apt-get install libprotobuf-dev apt-get instal...
阅读(3) 评论(0)

《深度学习——实战caffe》Ubnutu环境准备

在Ubnutu下如果没有使用root帐号,则每个命令前需要加sudo sudo apt-get install git sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5...
阅读(2) 评论(0)

Ubuntu中如何设置matplotlib中文字体

在windows中font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)在Ubuntu中先要查看Ubuntu中自带的中文字体查看字体可以用下面的方法:1. 打开 LibreOffi...
阅读(3) 评论(0)

pycharm注册码激活

一、只在Windows中注册码激活:正常安装,需要输入activation code时, 进入http://idea.lanyus.com/ 这个页面获取注册码具体步骤如下:Pycharm 2017注册码怎么用?注意事项:在正式使用注册码之前,请将“0.0.0.0 account.jetbrain...
阅读(6) 评论(0)
    个人资料
    等级:
    访问量: 271
    积分: 245
    排名: 32万+
    文章存档