动态规划一(上课)

1.状态怎样定义
2.怎样进行状态的转移
核心思想:讲一个问题拆成若干子问题,通过求解子问题,来推断原问题的解。
性质:
1.无后效性,”未来与过去无关“,如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响。
2.最优子结构,大问题的最优解可以由小问题的最优解推出。
解题条件:能将大问题拆成几个小问题,且满足无后效性,最优子结构性质。
【例1】:
假设你有足够的1、5、11元面值的钞票。现在你的目标是凑出某个金额w,求需要用到尽量少的钞票数。
解:

#include<cstdio>
#include<iostream>
using namespace std;
int n;
int f[1005];
int main(){
   
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
   
        int cost=0x7f7f7f;
        if(i-1>=0) cost=min(cost,f[i-1]);
        if(i-5>=0) cost=min(cost,f[i-5]);
        if(i-11>=0) cost=min(cost,f[i-11]);
        f[i]=cost+1;
    }
    printf("%d",f[n]);
    return 0;
}

【思考1】:
如果要求出方案呢?
解:
用pre[i]记录f[i]是由哪一个转移过来的,然后再找f[i-pre[i]]是由哪一个转移过来的。

#include<cstdio>
#include<iostream>
using namespace std;
int n;
int f[1005],pre[1005];
int main(){
   
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
   
        int cost=0x7f7f7f;
        if(i-1>=0) cost=min(cost,f[i-1]),pre[i]=1;
        if(i-5>=0) cost=min(cost,f[i-5]),pre[i]=5;
        if(i-11>=0) cost=min(cost,f[i-11]),pre[i]=11;
        f[i]=cost+1;
    }
    printf("%d\n",f[n]);
    while(n){
   
        printf("%d\n",pre[n]);
        n-=pre[n];
    }
    return 0;
}

01背包问题:
有一个容量为m的背包和n个物品,物品i的体积为wi,价值为vi,
要求选一些物品放入背包中,在总体积不超过限制的前提下总价值最大。
法一:设f[i][j]:前i件物品放入容量为j的背包里在满足限制的前提下的最大价值。
空间复杂度O(nm)
f[i][j]–>f[n][m]
考虑第i个物品选与不选。
f[i][j]=max(f[i-1][j-w[i]]+v[i],f[i-1][j])

#include<cstdio>
#include<iostream>
using namespace std;
int m,n;
int w[1005],v[1005],f[1005][1005];
int main(){
   
    scanf("%d%d",&n,&m);
    for(Int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]);
    for(int i=1;i<=n;i++)
    for(int j=0;j<=m;j++){
   
        if(j-w[i]>=0) f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
        else f[i][j]=f[i-1][j];
    }
    printf("%d",f[n][m]);
    return 0;
}

法二:滚动数组优化
设f[0/1][j],只在f[0][]和f[1][]之间转移。
f[t][j]=max(f[t1][j],f[t1][j-w[i]]+v[i])

#include<cstdio>
#include<iostream>
using namespace std;
int n,m,t;
int f[2][1005];
int w[1005],v[1005];
int main(){
   
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]);
    for(int i=1;i<=n;i++)
    for(int j=0;j<=m;j++){
   
        t=i&1;
        if(j>=w[i]) f[t][j]=max(f[t^1][j],f[t^1][j-w[i]]+v[i]);
        else f[t][j]=f[t^1][j];
    }
    printf("%d",f[t][m]);
    return 0;
}

法三:一维数组优化:
j层枚举需要倒序枚举,这样才能保证用上一个阶段的状态更新当前阶段的状态,负责w[i]、v[i]可能会用很多次。

#include<cstdio>
#include<iostream>
using namespace std;
int m,n;
int w[1005],v[1005],f[1005];
int main(){
   
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]);
    for(int i=1;i<=n;i++)
    for(int j=m;j>=0;j--){
   
        if(j-w[i]>=0) f[j]=max(f[j],f[j-w[i]]+v[i]);
    }
    printf("%d",f[m]);
    return 0;
}

完全背包问题:
有一个容量为m的背包和n种物品,每种物品有无限个,物品i的体积为wi,价值为vi
要求选一些物品装入背包中,在总体积不超过限制的前提下总价值最大。
法一:一维做法
根据01背包中的一维做法可知,完全背包j层枚举只需要正序枚举即可,自动处理了每种物品有无限个。

#include<cstdio>
#include<iostream>
using namespace std;
int m,n;
int w[1005],v[1005],f[1005];
int main(){
   
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]);
    for(int i=1;i<=n;i++)
    for(int j=0;j<=m;j++){
   
        if(j-w[i]>=0) f[j]=max(f[j],f[j-w[i]]+v[i]);
    }
    printf("%d",f[m]);
    return 0;
}

法二:二维做法

#include<cstdio>
#include<iostream>
using namespace std;
int n
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值