Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
题意:
将n个数按照递增顺序排列,问交换的次数。
题解:
数据代太大,得离散化,然后用树状数组套,这里不会离散化的同学,一定要在纸上推一下这个过程,真的很nice的一个技巧。
代码:
#include <stdio.h>
#include <stdlib.h>
#include <queue>
#include <algorithm>
#include <cstring>
#include <iostream>
const int maxn=500005;
int n;
using namespace std;
int aa[maxn];
int c[maxn];
struct node//用结构体记录输出数据和下标。
{
int v;
int order;
}in[maxn];
int lowbit(int x)
{
return x&(-x);
}
int sum(int x)
{
int ans=0;
while(x>0)
{
ans+=c[x];
x-=lowbit(x);
}
return ans;
}
int add(int x,int y)
{
while(x<=n)
{
c[x]+=y;
x+=lowbit(x);
}
}
bool cmp(node x,node y)
{
return x.v<y.v;
}
int main()
{
while(cin>>n)
{
if(n<=0)
break;
for(int i=1;i<=n;i++)
{
cin>>in[i].v;
in[i].order=i;
}
sort(in+1,in+1+n,cmp);
for(int i=1;i<=n;i++)//离散化。
{
aa[in[i].order]=i;
}
memset(c,0,sizeof(c));
long long ans=0;
for(int i=1;i<=n;i++)
{
add(aa[i],1);
ans+=i-sum(aa[i]);
}
cout<<ans<<endl;
}
}