A. Shell Game
time limit per test:0.5 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output
Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.
Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).
Let’s number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly n movements were made by the operator and the ball was under shell x at the end. Now he wonders, what was the initial position of the ball?
Input
The first line of the input contains an integer n (1 ≤ n ≤ 2·109) — the number of movements made by the operator.
The second line contains a single integer x (0 ≤ x ≤ 2) — the index of the shell where the ball was found after n movements.
Output
Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.
Examples
Input
4
2
Output
1
Input
1
1
Output
0
Note
In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell.
2. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell.
3. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle.
4. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
题意:有编号为0,1,2的三个杯,给出一种变化方式,左中互换,中右互换。问n次变化后,在x位置的原编号。
题解:6次变换为一个周期,模拟一下即可。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int dp[6][3]={0,1,2,1,0,2,1,2,0,2,1,0,2,0,1,0,2,1};
int main()
{
int n,x;
cin>>n>>x;
n%=6;
cout<<dp[n][x]<<endl;
}
B. Game of Credit Cards
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output
After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards.
Rules of this game are simple: each player bring his favourite n-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if n = 3, Sherlock’s card is 123 and Moriarty’s card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick.
Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks.
Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of digits in the cards Sherlock and Moriarty are going to use.
The second line contains n digits — Sherlock’s credit card number.
The third line contains n digits — Moriarty’s credit card number.
Output
First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.
Examples
Input
3
123
321
Output
0
2
Input
2
88
00
Output
2
0
Note
First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
题意:a,b有n个卡片,每次两人出一张牌比大小,赢得可以打对面一下,现在b知道a的牌序,问b最少被打次数和a最多被打次数。
题意:排序贪心一下就好。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
char a[2000],b[2000],c[2000];
int main()
{
int n;
cin>>n;
cin>>a>>b;
sort(a,a+n);
sort(b,b+n);
int x,y;
x=y=0;
for(int i=0,j=0;j<n;j++)
{
if(b[j]>=a[i])i++;
else x++;
}
for(int i=n-1,j=n-1;i>=0;i--)
{
if(b[j]>a[i]) {y++;j--;};
}
cout<<x<<endl;
cout<<y<<endl;
}