Codeforces Round #401 (Div. 2)A+B

本文介绍了一种涉及策略选择的游戏,通过分析游戏规则,给出了最优策略下的最少及最多打击次数的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Shell Game

time limit per test:0.5 seconds

memory limit per test:256 megabytes

input:standard input

output:standard output

Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.

Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).

Let’s number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly n movements were made by the operator and the ball was under shell x at the end. Now he wonders, what was the initial position of the ball?

Input

The first line of the input contains an integer n (1 ≤ n ≤ 2·109) — the number of movements made by the operator.

The second line contains a single integer x (0 ≤ x ≤ 2) — the index of the shell where the ball was found after n movements.

Output

Print one integer from 0 to 2 — the index of the shell where the ball was initially placed.

Examples

Input
4
2

Output
1

Input
1
1

Output
0

Note

In the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements.
1. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell.
2. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell.
3. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle.
4. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell.
题意:有编号为0,1,2的三个杯,给出一种变化方式,左中互换,中右互换。问n次变化后,在x位置的原编号。
题解:6次变换为一个周期,模拟一下即可。
代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int dp[6][3]={0,1,2,1,0,2,1,2,0,2,1,0,2,0,1,0,2,1};
int main()
{
    int n,x;
    cin>>n>>x;
    n%=6;
    cout<<dp[n][x]<<endl;
}

B. Game of Credit Cards

time limit per test:2 seconds

memory limit per test:256 megabytes

input:standard input

output:standard output

After the fourth season Sherlock and Moriary have realized the whole foolishness of the battle between them and decided to continue their competitions in peaceful game of Credit Cards.

Rules of this game are simple: each player bring his favourite n-digit credit card. Then both players name the digits written on their cards one by one. If two digits are not equal, then the player, whose digit is smaller gets a flick (knock in the forehead usually made with a forefinger) from the other player. For example, if n = 3, Sherlock’s card is 123 and Moriarty’s card has number 321, first Sherlock names 1 and Moriarty names 3 so Sherlock gets a flick. Then they both digit 2 so no one gets a flick. Finally, Sherlock names 3, while Moriarty names 1 and gets a flick.

Of course, Sherlock will play honestly naming digits one by one in the order they are given, while Moriary, as a true villain, plans to cheat. He is going to name his digits in some other order (however, he is not going to change the overall number of occurences of each digit). For example, in case above Moriarty could name 1, 2, 3 and get no flicks at all, or he can name 2, 3 and 1 to give Sherlock two flicks.

Your goal is to find out the minimum possible number of flicks Moriarty will get (no one likes flicks) and the maximum possible number of flicks Sherlock can get from Moriarty. Note, that these two goals are different and the optimal result may be obtained by using different strategies.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of digits in the cards Sherlock and Moriarty are going to use.

The second line contains n digits — Sherlock’s credit card number.

The third line contains n digits — Moriarty’s credit card number.

Output

First print the minimum possible number of flicks Moriarty will get. Then print the maximum possible number of flicks that Sherlock can get from Moriarty.

Examples

Input
3
123
321

Output
0
2

Input
2
88
00

Output
2
0

Note

First sample is elaborated in the problem statement. In the second sample, there is no way Moriarty can avoid getting two flicks.
题意:a,b有n个卡片,每次两人出一张牌比大小,赢得可以打对面一下,现在b知道a的牌序,问b最少被打次数和a最多被打次数。
题意:排序贪心一下就好。
代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
char a[2000],b[2000],c[2000];
int main()
{
    int n;
    cin>>n;
    cin>>a>>b;
    sort(a,a+n);
    sort(b,b+n);
    int x,y;
    x=y=0;
    for(int i=0,j=0;j<n;j++)
    {
        if(b[j]>=a[i])i++;
        else x++;
    }
    for(int i=n-1,j=n-1;i>=0;i--)
    {
        if(b[j]>a[i]) {y++;j--;};
    }
    cout<<x<<endl;
    cout<<y<<endl;
}
内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
### 关于 Codeforces Round 997 Div. 2 的题目及解析 #### A. XOR Mixup 在这个问题中,给定了两个整数 \(a\) 和 \(b\) ,以及一个正整数 \(k\) 。目标是在不超过 \(k\) 步内通过交换 \(a\) 和 \(b\) 中任意一位来使得两者相等。如果可以在指定步数内完成,则返回 "YES";否则返回 "NO"[^1]。 对于这个问题的一个有效解决方案是计算不同位的数量并判断其是否小于等于两倍的 k 值加上 a 和 b 的二进制表示中最右边不同的位置索引之差。这是因为每一步最多能改变一对不匹配的位置状态。 ```cpp #include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while(t--) { long long a, b, k; cin >> a >> b >> k; bitset<32> ba(a), bb(b); int diff = 0; for(int i=0; i<32; ++i){ if(ba[i]!=bb[i])++diff; } cout << ((abs(__builtin_ctzll(a ^ b)) + 2 * k >= diff) ? "YES\n":"NO\n"); } } ``` #### B. Array Shrinking 此题描述了一个数组缩小的过程:允许选取连续子数组并将它们替换为其最大公约数值(GCD),直到整个数组变成单个元素为止。询问最终剩余的那个唯一数字是什么样的最小可能值[^2]? 解决方法涉及到动态规划的思想——维护一个二维表 dp[][],其中dp\[l\]\[r\] 表达的是区间 \([l,r]\) 能够被压缩成的最大 GCD 数字。转移方程基于枚举中间点 m 来分割原区间为更小子区间的组合方式实现更新。 ```cpp const int N = 2e5+7; long long gcd(long long a,long long b){return !b?a:gcd(b,a%b);} vector<int> v(N); unordered_map<long long,int> mp[N]; void solve(){ int n; scanf("%d",&n); for(int i=1;i<=n;++i)v[i]=rand()%N+1; memset(mp,0,sizeof(mp)); for(int len=1;len<=n;++len) for(int l=1;l+len-1<=n;++l){ int r=l+len-1; if(len==1)mp[l][v[l]]=1; else{ unordered_set<long long> st; for(auto &p : mp[l]) if(p.second>=len-1&&gcd(v[r],p.first)==v[r]){ printf("0");exit(0); }else{st.insert(gcd(v[r],p.first));} for(auto x:st)mp[l][x]++; } } puts(to_string(mp[1].begin()->first).c_str()); } signed main(){solve();} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值