发明KMP算法的Knuth大佬说二分查找:思路很简单,细节是魔鬼 二分查找真正的坑在于mid到底是加一还是减一,以及while里面到底是 < 还是 <=.
下面根据常见的几个二分查找的场景尝试总结一下二分查找的编程框架,分为寻找一个数,寻找左侧边界,寻找右侧边界。在此过程中,对于mid以及while循环的细节问题进行编码检测,分析细节差异。
二分查找框架
int binarySearch(vector<int> nums, int target){
int left = 0,right = ...;
while(...){
int mid = left + (right-left)/2;
if(nums[mid] == target){
...
}
else if(nums[mid] < target){
left = ...
}
else if(nums[mid] > target){
right = ...
}
}
return ...;
}
编程时的一个实用技巧是:不要出现else,将所有情况实用else if写清楚,展现所有细节。
- 为了防止计算mid时的溢出 , 代码中使用 left +(right-left)/2 有效防止了left与right相加导致溢出的情况。
- … 标记的部分就是细节出现的地方,在下面的例子中会进行详细分析。
一、寻找一个数
这个场景最简单,在一个有序数组(从小到大)中搜索一个数字,存在返回索引,否则返回-1。
int binartSearch(vector<int> nums, int target)
{
int left = 0, right = nums.size() -1;// 注意
while(left <= right) // 注意
{
int mid = left + (right-left)/2;
if(nums[mid]==target) return mid;
else if(nums[mid] < target) left = mid +1;// 注意
else right = mid-1;// 注意
}
return -1;// 注意
}
- while循环中使用 <= 的原因
while循环中如果没找到target一直会持续搜索,直到left > right才会结束,比如[3,2],此时搜索空间为空,返回-1。 而如果写成 <的情况,在left == right就会结束搜索,此时[2,2]区间内还有一个元素没有搜索到。
while(left < right)
return nums[left]==target? left:-1;
- left = mid +1, right = mid-1
从搜索区间来讲,此时mid元素已经搜索过,那么还剩下两段区间,分别为[left, mid-1]以及[mid+1, right]。left以及right表示