识别准确率竟如此高,实时语音识别服务

16 篇文章 11 订阅
本文介绍了FunASR高精度的语音识别框架,详细步骤包括安装Pytorch和相关库,启动WebSocket服务,以及如何在Android应用中调用服务进行实时语音识别。同时提到了在多并发场景下的LinuxDocker部署方案和Android客户端配置。
摘要由CSDN通过智能技术生成

前言

本文将介绍一个准确率非常高的语音识别框架,那就是FunASR,这个框架的模型训练数据超过几万个小时,经过测试,准确率非常高。本文将介绍如何启动WebSocket服务和Android调用这个服务来实时识别,一边说话一边出结果。

安装环境

  1. 安装Pytorch。
# 安装CPU版本的Pytorch
conda install pytorch torchvision torchaudio cpuonly -c pytorch
# 安装GPU版本的Pytorch
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

  1. 使用conda安装ffmpeg等一些库。
conda install ffmpeg
conda install -c conda-forge pynini
  1. 安装其他依赖库。
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

启动服务

  1. 执行server.py程序,启动上传音频文件识别服务。
python server.py

Python不支持多并发的,如果要使用多并发服务,需要在Linux系统上面,执行websocket目录的Docker应用。

Android应用

使用Android Studio打开源码中的AndroidClient目录,这是一个Android应用源码,打开之后首先就要修改WebSocket地址ASR_HOST,将它修改为你上面使用的服务器IP地址,点击运行安装到Android手机上。

应用效果图:

知识星球

扫码入知识星球,搜索【FunASR语音识别WebSocket服务】获取源码

知识星球
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜雨飘零1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值