归并排序

时间复杂度 O(nlogn)!

过程:

利用递归与分治的技术将数据序列划分为越来越小的半子表,再对半子表排序,最后再用递归方法将排好序的半子表合并成越来越大的有序序列。

public class MergeSort {
	public static void mergeSort(int[] arr){
		if(arr == null || arr.length < 2 ){ //检验数组合法性
			return;
		}
		makeProcess(arr,0,arr.length-1);
		
	}
	
	public static void makeProcess(int[] arr,int L,int R){
		if(L == R){
			return;	//如果相等,当前只剩一个数,直接返回,顺序执行下面的代码。
		}
//		int mid = (L + R) >> 1;	//效果是(L+R)/2,但是存在L+R溢出的可能,这种写法不安全;所以用L+(R-L)/2不会溢出
		int mid = L + ((R - L) >> 1); //位运算比算术运算快,但是右移在负数为奇数时候和除以2是不一样的
		makeProcess(arr, L, mid);	//对数组左半边进行排序
		makeProcess(arr, mid+1, R);	//对数组右半边进行排序 
		
		merge(arr,L,mid,R);	//左右两边分别有序后,整体排序,这里是外排
		
	}
	
	public static void merge(int[] arr,int L,int mid,int R){
		int[] help = new int[R - L + 1]; //辅助数组,用来存储排好序的元素
		int i= 0;
		int p1 = L;
		int p2 = mid + 1; 
		while(p1 <= mid && p2 <= R){
			help[i++] = arr[p1] > arr[p2] ? arr[p2++] : arr[p1++]; //将更小的元素放入help中
		}
		
		//下面的越界情况只会发生一种,不会两种都发生
		while(p1 <= mid){ //右边已经全部放入help中,将左边剩下的放入
			help[i++] = arr[p1++];
		}
		
		while(p2 <= R){ //左边已经全部放入help中
			help[i++] = arr[p2++];
		}
		
		//将help数组赋给原数组,使原数组有序
		for(int j=0;j<help.length;j++){
			arr[L + j] = help[j];
//			System.out.print(arr[j] + ",");
		}
	}
	
	public static void main(String[] args) {
		int[] arr = {8,4,3,9,6,7};
		mergeSort(arr);
		for (int i = 0; i < arr.length; i++) {
			System.out.print(arr[i] + ",");
		}
	}
}

额外空间复杂度是O(N)!

可以变成O(1),但是非常难,不需要掌握,可以搜“归并排序内部缓存法”!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值