题意
Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。
上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。
N < = 100,M < = 1000。
分析
二分答案把图重建一遍之后最大流判定即可。
注意流量可以是小数。。。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N=105;
const int inf=1000000000;
const double eps=1e-8;
const double EPS=1e-5;
int n,m,p,cnt,last[N],cur[N],dis[N],s,t;
struct edge{int to,next;double c,val;}e[2005];
queue<int> que;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void addedge(int u,int v,int c)
{
e[++cnt].to=v;e[cnt].c=e[cnt].val=(double)c;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].c=e[cnt].val=0;e[cnt].next=last[v];last[v]=cnt;
}
bool bfs()
{
for (int i=s;i<=t;i++) dis[i]=0;
while (!que.empty()) que.pop();
dis[s]=1;que.push(s);
while (!que.empty())
{
int u=que.front();que.pop();
for (int i=last[u];i;i=e[i].next)
if (fabs(e[i].c)>eps&&!dis[e[i].to])
{
dis[e[i].to]=dis[u]+1;
if (e[i].to==t) return 1;
que.push(e[i].to);
}
}
return 0;
}
double dfs(int x,double maxf)
{
if (x==t||fabs(maxf)<eps) return maxf;
double ret=0;
for (int &i=cur[x];i;i=e[i].next)
if (e[i].c&&dis[e[i].to]==dis[x]+1)
{
double f=dfs(e[i].to,min(e[i].c,maxf-ret));
e[i].c-=f;
e[i^1].c+=f;
ret+=f;
if (maxf==ret) break;
}
return ret;
}
double dinic()
{
double ans=0;
while (bfs())
{
for (int i=s;i<=t;i++) cur[i]=last[i];
ans+=dfs(s,inf);
}
return ans;
}
int main()
{
n=read();m=read();p=read();s=1;t=n;cnt=1;
for (int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
addedge(x,y,z);
}
double ans=dinic();
double l=0,r=ans;
while (r-l>EPS)
{
double mid=(l+r)/2;
for (int i=2;i<=cnt;i+=2) e[i].c=min(e[i].val,mid),e[i+1].c=0;
if (fabs(dinic()-ans)<eps) r=mid;
else l=mid;
}
printf("%d\n%.4lf",(int)ans,(double)r*p);
return 0;
}

736

被折叠的 条评论
为什么被折叠?



