[noip2012tg] 借教室

二分查找解决订单调度问题
本文介绍了一种使用二分查找技术解决特定订单调度问题的方法。通过确定最大可行订单号或最小不可行订单号来优化调度过程,确保每个时间段内的订单总量不超过仓库容量限制。

题解:满足单调性。开始时二分可行的最大订单号,比较麻烦,可以二分最小的不可行的订单号

最大可行

#include <iostream>
#include <cstdio>
using namespace std;
const int M=1000005;
int n,m;
int l,r,mid,ans;
int d[M],s[M],e[M],w[M],sum[M];
void init()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    scanf("%d",&w[i]);
    for(int i=1;i<=m;i++)
    scanf("%d%d%d",&d[i],&s[i],&e[i]);
}
bool check(int x)
{
    for(int i=1;i<=n;i++) sum[i]=0;
    for(int i=1;i<=x;i++)
    sum[s[i]]+=d[i],sum[e[i]+1]-=d[i];
    for(int i=1;i<=n;i++)
    {
        sum[i]+=sum[i-1];
        if(sum[i]>w[i]) return false;
    }
    return true;
}
void work()
{
    l=1,r=m+1;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(check(mid))
        ans=mid,l=mid+1;
        else r=mid-1;
    }
    if(ans>=m) printf("0\n");
    else cout<<"-1"<<endl<<ans+1<<endl;
}
int main()
{
    init();
    work();
    return 0;
} 

最小不可行

#include <iostream>
#include <cstdio>
using namespace std;
const int M=1000005;
int n,m;
int l,r,mid,ans;
int d[M],s[M],e[M],w[M],sum[M];
void init()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    scanf("%d",&w[i]);
    for(int i=1;i<=m;i++)
    scanf("%d%d%d",&d[i],&s[i],&e[i]);
}
bool check(int x)
{
    for(int i=1;i<=n;i++) sum[i]=0;
    for(int i=1;i<=x;i++)
    sum[s[i]]+=d[i],sum[e[i]+1]-=d[i];
    for(int i=1;i<=n;i++)
    {
        sum[i]+=sum[i-1];
        if(sum[i]>w[i]) return false;
    }
    return true;
}
void work()
{
    l=1,r=m+1;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(!check(mid))
        ans=mid,r=mid-1;
        else l=mid+1;
    }
    if(!ans) printf("0\n");
    else cout<<"-1"<<endl<<ans<<endl;
}
int main()
{
    init();
    work();
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值