
redis
文章平均质量分 76
用心去追梦
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Redis面试题总结
redis 简介简单来说 redis 就是一个数据库,不过与传统数据库不同的是 redis 的数据是存在内存中的,所以存写速度非常快,因此 redis 被广泛应用于缓存方向。另外,redis 也经常用来做分布式锁。redis 提供了多种数据类型来支持不同的业务场景。除此之外,redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。为什么要用 redis /为什么要用缓存主要从“高性能”和“高并发”这两点来看待这个问题。高性能:假如用户第一次访问数据库中的某些数据。这个过程会比较慢原创 2021-12-30 00:11:51 · 182 阅读 · 0 评论 -
为什么用redis?
为什么用redis?简单说:提升用户体验和应对更多的用户下面我们主要从“高性能”和“高并发”这两点来看待这个问题。高性能 :对照上面 ???? 我画的图。我们设想这样的场景:假如用户第一次访问数据库中的某些数据的话,这个过程是比较慢,毕竟是从硬盘中读取的。但是,如果说,用户访问的数据属于高频数据并且不会经常改变的话,那么我们就可以很放心地将该用户访问的数据存在缓存中。这样有什么好处呢? 那就是保证用户下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。原创 2021-10-27 17:55:40 · 2710 阅读 · 0 评论 -
Redis五种数据结构详解
一、脑图Redis是基于c语言编写的开源非关系型内存数据库,可以用作数据库、缓存、消息中间件,这么优秀的东西一定要一点一点的吃透它。Redis的五种数据结构包括以下五种:String:字符串类型List:列表类型Set:无序集合类型ZSet:有序集合类型Hash:哈希表类型但是作为一名优秀的程序在Redis中有一个「核心的对象」叫做redisObject ,是用来表示所有的key和value的,用redisObject结构体来表示String、Hash、List、Set、ZSet五种数据类型。原创 2021-08-08 22:21:36 · 403 阅读 · 0 评论 -
redis之mq实现发布订阅模式
https://github.com/smltq/spring-boot-demo/blob/master/mq-redis概述Redis不仅可作为缓存服务器,还可用作消息队列,本示例演示如何使用redis实现发布/订阅消息队列。在Redis中,发布者没有将消息发送给特定订阅者的程序。相反,发布的消息被描述为通道,而不知道(如果有的话)可能有哪些订阅者。订阅者表示对一个或多个主题感兴趣,只接收感兴趣的消息,而不知道(如果有的话)发布者是什么。发布者和订阅者的这种解耦可以实现更大的可伸缩性和更动态.原创 2021-08-02 11:22:57 · 392 阅读 · 0 评论 -
Redis 与 MQ 的区别
Redis是一个高性能的key-value数据库,它的出现很大程度补偿了memcached这类key-value存储的不足。虽然它是一个数据库系统,但本身支持MQ功能,完全可以当做一个轻量级的队列服务器使用。不过,Redis只是提供一个高性能的、原子操作内存键值队,具有高速访问能力,虽可用做消息队列的存储,但是不具备消息队列的任何功能和逻辑,要作做为消息队列来实现的话,功能和逻辑要通过上层应用自己实现。Redis从2.0版本开始支持发布/订阅指令,发布者调用redis的publish方法往特定的chan原创 2021-08-02 10:07:01 · 504 阅读 · 0 评论 -
用redis构建分布式锁
单实例的实现#从2.6.12版本开始,redis为SET命令增加了一系列选项:EX seconds – 设置键key的过期时间,单位时秒PX milliseconds – 设置键key的过期时间,单位时毫秒NX – 只有键key不存在的时候才会设置key的值XX – 只有键key存在的时候才会设置key的值如果有2个进程(可能位于不同机器)需要竞争某个资源,可以为这个资源加锁,锁放在redis里面,这样两个进程都能访问到,例如下面的命令:SET resource-name random-val原创 2021-07-28 21:26:11 · 139 阅读 · 0 评论 -
REDIS缓存穿透,缓存击穿,缓存雪崩原因+解决方案
一、前言在我们日常的开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景,或者是主页访问量瞬间较大的时候,单一使用数据库来保存数据的系统会因为面向磁盘,磁盘读/写速度比较慢的问题而存在严重的性能弊端,一瞬间成千上万的请求到来,需要系统在极短的时间内完成成千上万次的读/写操作,这个时候往往不是数据库能够承受的,极其容易造成数据库系统瘫痪,最终导致服务宕机的严重生产问题。为了克服上述的问题,转载 2021-07-13 16:42:16 · 128 阅读 · 0 评论